We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature.
DOI : 10.5802/acirm.30
Keywords: Integer-valued polynomials, matrices, quaternions, group rings, Prüfer domains.
Frisch, Sophie 1
@article{ACIRM_2010__2_2_27_0,
author = {Frisch, Sophie},
title = {Integer-valued polynomials on algebras: a survey},
journal = {Actes des rencontres du CIRM},
pages = {27--32},
year = {2010},
publisher = {CIRM},
volume = {2},
number = {2},
doi = {10.5802/acirm.30},
zbl = {06938578},
language = {en},
url = {https://www.numdam.org/articles/10.5802/acirm.30/}
}
Frisch, Sophie. Integer-valued polynomials on algebras: a survey. Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 27-32. doi: 10.5802/acirm.30
[1] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Math. Surveys and Monographs 48, Amer. Math. Soc., Povidence, R.I., 1997.
[2] S. Frisch, Polynomial separation of points in algebras, in Arithmetical Properties of Commutative Rings and Monoids, 253–259, Lect. Notes Pure Appl. Math. 241, Chapman & Hall, Boca Raton, 2005. | Zbl
[3] S. Frisch, Integer-valued polynomials in algebra, preprint. | MR | DOI
[4] F. Halter-Koch and W. Narkiewicz, Commutative rings and binomial coefficients, Monatsh. Math. 114 (1992), 107–110. | DOI | Zbl
[5] K. A. Loper, A generalization of integer-valued polynomial rings, preprint. | MR | DOI | Zbl
[6] N. Werner, Integer-valued polynomials over quaternions rings, J. Algebra 324 (2010), 1754–1769. | DOI | Zbl
[7] N. Werner, Integer-valued polynomials over matrix rings, Comm. Algebra, to appear. | Zbl | MR | DOI
Cité par Sources :





