Rational motivic path spaces and Kim’s relative unipotent section conjecture
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 117-172
We develop the foundations of commutative algebra objects in the category of motives, which we call “motivic dga’s.” Works of White and Cisinski and Déglise provide us with a suitable model structure. This enables us to reconstruct the unipotent fundamental group of a pointed scheme from the associated augmented motivic dga and provides us with a factorization of Kim’s relative unipotent section conjecture into several smaller conjectures with a homotopical flavor.
@article{RSMUP_2022__148__117_0,
author = {Dan-Cohen, Ishai and Schlank, Tomer M.},
title = {Rational motivic path spaces and {Kim{\textquoteright}s} relative unipotent section conjecture},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {117--172},
year = {2022},
volume = {148},
doi = {10.4171/rsmup/97},
mrnumber = {4542375},
zbl = {07673824},
language = {en},
url = {https://www.numdam.org/articles/10.4171/rsmup/97/}
}
TY - JOUR AU - Dan-Cohen, Ishai AU - Schlank, Tomer M. TI - Rational motivic path spaces and Kim’s relative unipotent section conjecture JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2022 SP - 117 EP - 172 VL - 148 UR - https://www.numdam.org/articles/10.4171/rsmup/97/ DO - 10.4171/rsmup/97 LA - en ID - RSMUP_2022__148__117_0 ER -
%0 Journal Article %A Dan-Cohen, Ishai %A Schlank, Tomer M. %T Rational motivic path spaces and Kim’s relative unipotent section conjecture %J Rendiconti del Seminario Matematico della Università di Padova %D 2022 %P 117-172 %V 148 %U https://www.numdam.org/articles/10.4171/rsmup/97/ %R 10.4171/rsmup/97 %G en %F RSMUP_2022__148__117_0
Dan-Cohen, Ishai; Schlank, Tomer M. Rational motivic path spaces and Kim’s relative unipotent section conjecture. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 117-172. doi: 10.4171/rsmup/97
Cité par Sources :





