Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to\ a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring and on additional set-theoretic hypotheses. For commutative noetherian of Krull dimension , we show that the assertion 'projectivity is a factorization property with respect to a single epimorphism' is independent of ZFC + GCH. We also show that if is any ring and there exists a strongly compact cardinal , then the category of all projective modules is -accessible.
@article{RSMUP_2020__144__217_0,
author = {\v{S}aroch, Jan and Trlifaj, Jan},
title = {Test sets for factorization properties of modules},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {217--238},
year = {2020},
volume = {144},
doi = {10.4171/rsmup/66},
mrnumber = {4186456},
zbl = {1477.16003},
language = {en},
url = {https://www.numdam.org/articles/10.4171/rsmup/66/}
}
TY - JOUR AU - Šaroch, Jan AU - Trlifaj, Jan TI - Test sets for factorization properties of modules JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 217 EP - 238 VL - 144 UR - https://www.numdam.org/articles/10.4171/rsmup/66/ DO - 10.4171/rsmup/66 LA - en ID - RSMUP_2020__144__217_0 ER -
Šaroch, Jan; Trlifaj, Jan. Test sets for factorization properties of modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 217-238. doi: 10.4171/rsmup/66
Cité par Sources :





