On the unbalanced cut problem and the generalized Sherrington–Kirkpatrick model
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 1, pp. 35-88
We establish a strict asymptotic inequality between a class of graph partition problems on the sparse Erdős–Rényi and random regular graph ensembles with the same average degree. Along the way, we establish a variational representation for the ground state energy for generalized mixed -spin glasses and derive strict comparison inequalities for such models as the alphabet changes.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/97
Publié le :
DOI : 10.4171/aihpd/97
Classification :
90-XX, 05-XX, 49-XX, 82-XX
Keywords: Random graphs, unbalanced cuts, spin glasses, gamma convergence
Keywords: Random graphs, unbalanced cuts, spin glasses, gamma convergence
@article{AIHPD_2021__8_1_35_0,
author = {Jagannath, Aukosh and Sen, Subhabrata},
title = {On the unbalanced cut problem and the generalized {Sherrington{\textendash}Kirkpatrick} model},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {35--88},
year = {2021},
volume = {8},
number = {1},
doi = {10.4171/aihpd/97},
mrnumber = {4228619},
zbl = {1469.90123},
language = {en},
url = {https://www.numdam.org/articles/10.4171/aihpd/97/}
}
TY - JOUR AU - Jagannath, Aukosh AU - Sen, Subhabrata TI - On the unbalanced cut problem and the generalized Sherrington–Kirkpatrick model JO - Annales de l’Institut Henri Poincaré D PY - 2021 SP - 35 EP - 88 VL - 8 IS - 1 UR - https://www.numdam.org/articles/10.4171/aihpd/97/ DO - 10.4171/aihpd/97 LA - en ID - AIHPD_2021__8_1_35_0 ER -
%0 Journal Article %A Jagannath, Aukosh %A Sen, Subhabrata %T On the unbalanced cut problem and the generalized Sherrington–Kirkpatrick model %J Annales de l’Institut Henri Poincaré D %D 2021 %P 35-88 %V 8 %N 1 %U https://www.numdam.org/articles/10.4171/aihpd/97/ %R 10.4171/aihpd/97 %G en %F AIHPD_2021__8_1_35_0
Jagannath, Aukosh; Sen, Subhabrata. On the unbalanced cut problem and the generalized Sherrington–Kirkpatrick model. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 1, pp. 35-88. doi: 10.4171/aihpd/97
Cité par Sources :





