A bijection for nonorientable general maps
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791
We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonorientable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and this allows us to recover a famous asymptotic enumeration formula found by Gao.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/153
Publié le :
DOI : 10.4171/aihpd/153
Classification :
05-XX
Keywords: map, graph, bijection, nonorientable surface, triangulation, Brownian surface
Keywords: map, graph, bijection, nonorientable surface, triangulation, Brownian surface
@article{AIHPD_2022__9_4_733_0,
author = {Bettinelli, Jeremie},
title = {A bijection for nonorientable general maps},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {733--791},
year = {2022},
volume = {9},
number = {4},
doi = {10.4171/aihpd/153},
mrnumber = {4525144},
zbl = {1509.05028},
language = {en},
url = {https://www.numdam.org/articles/10.4171/aihpd/153/}
}
Bettinelli, Jeremie. A bijection for nonorientable general maps. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791. doi: 10.4171/aihpd/153
Cité par Sources :





