Determinantal probability measures on Grassmannians
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 659-732
We introduce and study a class of determinantal probability measures generalising the class of discrete determinantal point processes. These measures live on the Grassmannian of a real, complex, or quaternionic inner product space that is split into pairwise orthogonal finite-dimensional subspaces. They are determined by a positive self-adjoint contraction of the inner product space, in a way that is equivariant under the action of the group of isometries that preserve the splitting.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/152
Publié le :
DOI : 10.4171/aihpd/152
Classification :
60-XX, 14-XX, 81-XX, 82-XX
Keywords: determinantal measures, geometric probability, integral geometry, random geometry, enumerative geometry, Grassmannians, Plücker coordinates, graded vector spaces, matroid stratification, uniform spanning tree, quantum spanning forest
Keywords: determinantal measures, geometric probability, integral geometry, random geometry, enumerative geometry, Grassmannians, Plücker coordinates, graded vector spaces, matroid stratification, uniform spanning tree, quantum spanning forest
@article{AIHPD_2022__9_4_659_0,
author = {Kassel, Adrien and L\'evy, Thierry},
title = {Determinantal probability measures on {Grassmannians}},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {659--732},
year = {2022},
volume = {9},
number = {4},
doi = {10.4171/aihpd/152},
mrnumber = {4525143},
zbl = {1511.60072},
language = {en},
url = {https://www.numdam.org/articles/10.4171/aihpd/152/}
}
TY - JOUR AU - Kassel, Adrien AU - Lévy, Thierry TI - Determinantal probability measures on Grassmannians JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 659 EP - 732 VL - 9 IS - 4 UR - https://www.numdam.org/articles/10.4171/aihpd/152/ DO - 10.4171/aihpd/152 LA - en ID - AIHPD_2022__9_4_659_0 ER -
Kassel, Adrien; Lévy, Thierry. Determinantal probability measures on Grassmannians. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 659-732. doi: 10.4171/aihpd/152
Cité par Sources :





