Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 3, pp. 511-529
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cellpopulation models to free boundary problems of Hele–Shaw type. Although a vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV-uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/53
Classification : 35K57, 35K65, 35Q92, 35B45
Keywords: incompressible limit, rate of convergence, Porous medium equation, free boundary, Hele–Shaw problem
@article{AIHPC_2023__40_3_511_0,
     author = {David, Noemi and D\k{e}biec, Tomasz and Perthame, Beno{\^\i}t},
     title = {Convergence rate for the incompressible limit of nonlinear diffusion{\textendash}advection equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {511--529},
     year = {2023},
     volume = {40},
     number = {3},
     doi = {10.4171/aihpc/53},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpc/53/}
}
TY  - JOUR
AU  - David, Noemi
AU  - Dębiec, Tomasz
AU  - Perthame, Benoît
TI  - Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 511
EP  - 529
VL  - 40
IS  - 3
UR  - https://www.numdam.org/articles/10.4171/aihpc/53/
DO  - 10.4171/aihpc/53
LA  - en
ID  - AIHPC_2023__40_3_511_0
ER  - 
%0 Journal Article
%A David, Noemi
%A Dębiec, Tomasz
%A Perthame, Benoît
%T Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 511-529
%V 40
%N 3
%U https://www.numdam.org/articles/10.4171/aihpc/53/
%R 10.4171/aihpc/53
%G en
%F AIHPC_2023__40_3_511_0
David, Noemi; Dębiec, Tomasz; Perthame, Benoît. Convergence rate for the incompressible limit of nonlinear diffusion–advection equations. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 3, pp. 511-529. doi: 10.4171/aihpc/53

Cité par Sources :