Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1369-1412
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the unsteady incompressible Navier–Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of nonlinear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (with respect to terms of highest order). The estimates are obtained by introducing new analytical tools that allow dissipative effects of the fluid to be exploited for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation procedure; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin–Lions-type compactness result suitable for fluid–structure interactions.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/33
Classification : 76-XX, 76
Keywords: Fluid–structure interaction, weak solutions, regularity, compactness
@article{AIHPC_2022__39_6_1369_0,
     author = {Muha, Boris and Schwarzacher, Sebastian},
     title = {Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1369--1412},
     year = {2022},
     volume = {39},
     number = {6},
     doi = {10.4171/aihpc/33},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpc/33/}
}
TY  - JOUR
AU  - Muha, Boris
AU  - Schwarzacher, Sebastian
TI  - Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 1369
EP  - 1412
VL  - 39
IS  - 6
UR  - https://www.numdam.org/articles/10.4171/aihpc/33/
DO  - 10.4171/aihpc/33
LA  - en
ID  - AIHPC_2022__39_6_1369_0
ER  - 
%0 Journal Article
%A Muha, Boris
%A Schwarzacher, Sebastian
%T Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 1369-1412
%V 39
%N 6
%U https://www.numdam.org/articles/10.4171/aihpc/33/
%R 10.4171/aihpc/33
%G en
%F AIHPC_2022__39_6_1369_0
Muha, Boris; Schwarzacher, Sebastian. Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1369-1412. doi: 10.4171/aihpc/33

Cité par Sources :