[Géométrie birationnelle des feuilletages associés à des dérivations simples]
We propose a study of the foliations of the projective plane induced by simple derivations of the polynomial ring in two indeterminates over the complex field. These correspond to foliations which have no invariant algebraic curve nor singularities in the complement of a line. We establish the position of these foliations in the birational classification of foliations and prove the finiteness of their birational symmetries. Most of the results apply to wider classes of foliations.
Nous proposons une étude des feuilletages du plan projectif qui sont induits par une dérivation simple de l’anneau des polynômes à deux indéterminées sur le corps des complexes. Il s’agit des feuilletages qui ne possèdent ni courbe algébrique ni singularité dans le complémentaire d’une droite. Nous donnons leur emplacement dans la classification birationnelle des feuilletages et prouvons la finitude de leurs groupes de symétries birationnelles. La plupart des résultats s’applique en fait à des classes plus larges de feuilletages.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2793
Keywords: Holomorphic foliations, Birational geometry, Derivations
Mots-clés : Feuilletages holomorphes, Géométrie birationnelle, Dérivations
Cousin, Gaël 1 ; Mendes, Luís Gustavo 2 ; Pan, Iván 3
@article{BSMF_2019__147_4_607_0,
author = {Cousin, Ga\"el and Mendes, Lu{\'\i}s Gustavo and Pan, Iv\'an},
title = {Birational geometry of foliations associated to simple derivations},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {607--638},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {4},
doi = {10.24033/bsmf.2793},
mrnumber = {4057712},
zbl = {1446.14006},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2793/}
}
TY - JOUR AU - Cousin, Gaël AU - Mendes, Luís Gustavo AU - Pan, Iván TI - Birational geometry of foliations associated to simple derivations JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 607 EP - 638 VL - 147 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2793/ DO - 10.24033/bsmf.2793 LA - en ID - BSMF_2019__147_4_607_0 ER -
%0 Journal Article %A Cousin, Gaël %A Mendes, Luís Gustavo %A Pan, Iván %T Birational geometry of foliations associated to simple derivations %J Bulletin de la Société Mathématique de France %D 2019 %P 607-638 %V 147 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2793/ %R 10.24033/bsmf.2793 %G en %F BSMF_2019__147_4_607_0
Cousin, Gaël; Mendes, Luís Gustavo; Pan, Iván. Birational geometry of foliations associated to simple derivations. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 4, pp. 607-638. doi: 10.24033/bsmf.2793
Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. 2, Volume 68 (2003), pp. 615-630 | MR | Zbl | DOI
Foliations on complex projective surfaces, Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, pp. 49-77 | MR | Zbl
Birational geometry of foliations, IMPA Monographs, Springer, 2015 | MR | Zbl | DOI
Minimal models of foliated algebraic surfaces, Bull. Soc. Math. France, Volume 127 (1999), pp. 289-305 | MR | Zbl | Numdam | DOI
Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl | DOI
Action of the Cremona group on foliations on : some curious facts, Forum Math, Volume 27 (2015), pp. 3697-3715 | MR | Zbl | DOI
Géométrie classique de certains feuilletages de degré deux, Bull. Braz. Math. Soc. (N.S.), Volume 41 (2010), pp. 161-198 | MR | Zbl | DOI
Symétries birationnelles des surfaces feuilletées, J. Reine Angew. Math., Volume 561 (2003), pp. 199-235 | MR | Zbl
Complex codimension one singular foliations and Godbillon-Vey sequences, Mosc. Math. J., Volume 7 (2007), p. 21-54, 166 | MR | Zbl | DOI
Toward effective liouvillian integration, 2016 (arXiv:1604.05276) | MR | Zbl
Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018), pp. 1457-1506 | MR | Zbl | Numdam | DOI
Formes intégrables holomorphes singulières, Astérisque, Société Mathématique de France, Paris, 1982 | MR | Zbl | Numdam
On the differential simplicity of polynomial rings, J. Algebra, Volume 264 (2003), pp. 442-468 | MR | Zbl | DOI
On the classification of simple quadratic derivations over the affine plane, J. Algebra, Volume 319 (2008), pp. 4249-4274 | MR | Zbl | DOI
Transversely affine foliations on projective manifolds, Math. Res. Lett., Volume 21 (2014), pp. 985-1014 | MR | Zbl | DOI
A note on Liouvillian integrability, J. Math. Anal. Appl., Volume 387 (2012), pp. 1044-1049 | MR | Zbl | DOI
Differentially simple rings with no invertible derivatives, Quart. J. Math. Oxford Ser. (2), Volume 32 (1981), pp. 417-424 | MR | Zbl | DOI
Équations de Pfaff algébriques, Lecture Notes in Mathematics, Springer, 1979 | MR | Zbl | DOI
Some simple derivations of , Comm. Algebra, Volume 40 (2012), pp. 4100-4110 | MR | Zbl | DOI
Feuilletages holomorphes à holonomie résoluble, Ph. D. Thesis (1994)
Minimal, rigid foliations by curves on , JEMS, Volume 5 (2003), pp. 147-201 | MR | Zbl | DOI
Non-commutative Mori theory, 2001, pp. 1-142 preprint IHES M/00/15 (2000) (revised:M/01/42 (2001))
Kodaira dimension of holomorphic singular foliations, Bol. Soc. Brasil. Mat. (N.S.), Volume 31 (2000), pp. 127-143 | MR | Zbl | DOI
Simple quadratic derivations in two variables, Comm. Algebra, Volume 29 (2001), pp. 5095-5113 | MR | Zbl | DOI
Hilbert modular foliations on the projective plane, Comment. Math. Helv., Volume 80 (2005), pp. 243-291 | MR | Zbl | DOI
On plane polynomial automorphisms commuting with simple derivations, J. Pure Appl. Algebra, Volume 221 (2017), pp. 875-882 | MR | Zbl | DOI
An example of a simple derivation in two variables, Colloq. Math., Volume 113 (2008), pp. 25-31 | MR | Zbl | DOI
Polynomial derivations and their rings of constants, Uniwersytet Mikołaja Kopernika, Toruń, 1994 | MR | Zbl
The limit cycle of the van der Pol equation is not algebraic, Differential Equations, Volume 115 (1995), pp. 146-152 | MR | Zbl | DOI
Integrabilidade de folheações holomorfas, Colóquios Brasileiros de Matemática, IMPA, 2003 | MR | Zbl
Sur l’intégration algébrique des équations différentielles, Comptes Rendus Hebdomadaires de l’Académie des Sciences de Paris, Volume 112 (1891), pp. 761-764 | JFM
Transformation groups of holomorphic foliations, Comm. Anal. Geom., Volume 10 (2002), pp. 1115-1123 | MR | Zbl | DOI
Reduction of singularities of the differential equation , Amer. J. Math., Volume 90 (1968), pp. 248-269 | MR | Zbl | DOI
Automorphisms and skew polynomial rings, Ph. D. Thesis (1977)
On discontinuous groups operating on the product of the upper half planes, Ann. of Math. 2, Volume 77 (1963), pp. 33-71 | MR | Zbl | DOI
Sur les feuilletages holomorphes transversalement projectifs, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 815-846 | MR | Zbl | Numdam | DOI
Cité par Sources :






