Birational geometry of foliations associated to simple derivations
[Géométrie birationnelle des feuilletages associés à des dérivations simples]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 4, pp. 607-638

We propose a study of the foliations of the projective plane induced by simple derivations of the polynomial ring in two indeterminates over the complex field. These correspond to foliations which have no invariant algebraic curve nor singularities in the complement of a line. We establish the position of these foliations in the birational classification of foliations and prove the finiteness of their birational symmetries. Most of the results apply to wider classes of foliations.

Nous proposons une étude des feuilletages du plan projectif qui sont induits par une dérivation simple de l’anneau des polynômes à deux indéterminées sur le corps des complexes. Il s’agit des feuilletages qui ne possèdent ni courbe algébrique ni singularité dans le complémentaire d’une droite. Nous donnons leur emplacement dans la classification birationnelle des feuilletages et prouvons la finitude de leurs groupes de symétries birationnelles. La plupart des résultats s’applique en fait à des classes plus larges de feuilletages.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2793
Classification : 37F75, 13N15, 14E07
Keywords: Holomorphic foliations, Birational geometry, Derivations
Mots-clés : Feuilletages holomorphes, Géométrie birationnelle, Dérivations

Cousin, Gaël 1 ; Mendes, Luís Gustavo 2 ; Pan, Iván 3

1 GMA-IME-UFF, Campus do Gragoatá, Niterói, RJ, Brazil
2 Instituto de Matemática, UFRGS, Porto Alegre, Brazil
3 Centro de Matemática, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
@article{BSMF_2019__147_4_607_0,
     author = {Cousin, Ga\"el and Mendes, Lu{\'\i}s Gustavo and Pan, Iv\'an},
     title = {Birational geometry of foliations associated to simple derivations},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {607--638},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {4},
     doi = {10.24033/bsmf.2793},
     mrnumber = {4057712},
     zbl = {1446.14006},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2793/}
}
TY  - JOUR
AU  - Cousin, Gaël
AU  - Mendes, Luís Gustavo
AU  - Pan, Iván
TI  - Birational geometry of foliations associated to simple derivations
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 607
EP  - 638
VL  - 147
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2793/
DO  - 10.24033/bsmf.2793
LA  - en
ID  - BSMF_2019__147_4_607_0
ER  - 
%0 Journal Article
%A Cousin, Gaël
%A Mendes, Luís Gustavo
%A Pan, Iván
%T Birational geometry of foliations associated to simple derivations
%J Bulletin de la Société Mathématique de France
%D 2019
%P 607-638
%V 147
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2793/
%R 10.24033/bsmf.2793
%G en
%F BSMF_2019__147_4_607_0
Cousin, Gaël; Mendes, Luís Gustavo; Pan, Iván. Birational geometry of foliations associated to simple derivations. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 4, pp. 607-638. doi: 10.24033/bsmf.2793

Brumatti, P.; Lequain, Y.; Levcovitz, D. Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. 2, Volume 68 (2003), pp. 615-630 | MR | Zbl | DOI

Brunella, M. Foliations on complex projective surfaces, Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, pp. 49-77 | MR | Zbl

Brunella, M. Birational geometry of foliations, IMPA Monographs, Springer, 2015 | MR | Zbl | DOI

Brunella, M. Minimal models of foliated algebraic surfaces, Bull. Soc. Math. France, Volume 127 (1999), pp. 289-305 | MR | Zbl | Numdam | DOI

Bădescu, L. Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl | DOI

Cerveau, D.; Déserti, J. Action of the Cremona group on foliations on 2: some curious facts, Forum Math, Volume 27 (2015), pp. 3697-3715 | MR | Zbl | DOI

Cerveau, D.; Déserti, J.; Garba Belko, D.; Meziani, R. Géométrie classique de certains feuilletages de degré deux, Bull. Braz. Math. Soc. (N.S.), Volume 41 (2010), pp. 161-198 | MR | Zbl | DOI

Cantat, S.; Favre, C. Symétries birationnelles des surfaces feuilletées, J. Reine Angew. Math., Volume 561 (2003), pp. 199-235 | MR | Zbl

Cerveau, D.; Lins Neto, A.; Loray, F.; Pereira, J. V.; Touzet, F. Complex codimension one singular foliations and Godbillon-Vey sequences, Mosc. Math. J., Volume 7 (2007), p. 21-54, 166 | MR | Zbl | DOI

Cousin, G.; Lins Neto, A.; Pereira, J. V. Toward effective liouvillian integration, 2016 (arXiv:1604.05276) | MR | Zbl

Claudon, B.; Loray, F.; Pereira, J. V.; Touzet, F. Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018), pp. 1457-1506 | MR | Zbl | Numdam | DOI

Cerveau, D.; Mattei, J.-F. Formes intégrables holomorphes singulières, Astérisque, Société Mathématique de France, Paris, 1982 | MR | Zbl | Numdam

Coutinho, S. C. On the differential simplicity of polynomial rings, J. Algebra, Volume 264 (2003), pp. 442-468 | MR | Zbl | DOI

Coutinho, S. C. On the classification of simple quadratic derivations over the affine plane, J. Algebra, Volume 319 (2008), pp. 4249-4274 | MR | Zbl | DOI

Cousin, G.; Pereira, J. V. Transversely affine foliations on projective manifolds, Math. Res. Lett., Volume 21 (2014), pp. 985-1014 | MR | Zbl | DOI

Giné, J.; Llibre, J. A note on Liouvillian integrability, J. Math. Anal. Appl., Volume 387 (2012), pp. 1044-1049 | MR | Zbl | DOI

Jordan, D. A. Differentially simple rings with no invertible derivatives, Quart. J. Math. Oxford Ser. (2), Volume 32 (1981), pp. 417-424 | MR | Zbl | DOI

Jouanolou, J. P. Équations de Pfaff algébriques, Lecture Notes in Mathematics, Springer, 1979 | MR | Zbl | DOI

Kour, S. Some simple derivations of k[x,y] , Comm. Algebra, Volume 40 (2012), pp. 4100-4110 | MR | Zbl | DOI

Loray, F. Feuilletages holomorphes à holonomie résoluble, Ph. D. Thesis (1994)

Loray, F.; Rebelo, J. C. Minimal, rigid foliations by curves on n , JEMS, Volume 5 (2003), pp. 147-201 | MR | Zbl | DOI

McQuillan, M. Non-commutative Mori theory, 2001, pp. 1-142 preprint IHES M/00/15 (2000) (revised:M/01/42 (2001))

Mendes, L. G. Kodaira dimension of holomorphic singular foliations, Bol. Soc. Brasil. Mat. (N.S.), Volume 31 (2000), pp. 127-143 | MR | Zbl | DOI

Maciejewski, A.; Moulin-Ollagnier, J.; Nowicki, A. Simple quadratic derivations in two variables, Comm. Algebra, Volume 29 (2001), pp. 5095-5113 | MR | Zbl | DOI

Mendes, L. G.; Pereira, J. V. Hilbert modular foliations on the projective plane, Comment. Math. Helv., Volume 80 (2005), pp. 243-291 | MR | Zbl | DOI

Mendes, L. G.; Pan, I. On plane polynomial automorphisms commuting with simple derivations, J. Pure Appl. Algebra, Volume 221 (2017), pp. 875-882 | MR | Zbl | DOI

Nowicki, A. An example of a simple derivation in two variables, Colloq. Math., Volume 113 (2008), pp. 25-31 | MR | Zbl | DOI

Nowicki, A. Polynomial derivations and their rings of constants, Uniwersytet Mikołaja Kopernika, Toruń, 1994 | MR | Zbl

Odani, K. The limit cycle of the van der Pol equation is not algebraic, Differential Equations, Volume 115 (1995), pp. 146-152 | MR | Zbl | DOI

Pereira, J. V. Integrabilidade de folheações holomorfas, Colóquios Brasileiros de Matemática, IMPA, 2003 | MR | Zbl

Poincaré, H. Sur l’intégration algébrique des équations différentielles, Comptes Rendus Hebdomadaires de l’Académie des Sciences de Paris, Volume 112 (1891), pp. 761-764 | JFM

Pereira, J. V.; Sánchez, P. F. Transformation groups of holomorphic foliations, Comm. Anal. Geom., Volume 10 (2002), pp. 1115-1123 | MR | Zbl | DOI

Seidenberg, A. Reduction of singularities of the differential equation Ady=Bdx , Amer. J. Math., Volume 90 (1968), pp. 248-269 | MR | Zbl | DOI

Shamsuddin, A. Automorphisms and skew polynomial rings, Ph. D. Thesis (1977)

Shimizu, H. On discontinuous groups operating on the product of the upper half planes, Ann. of Math. 2, Volume 77 (1963), pp. 33-71 | MR | Zbl | DOI

Touzet, F. Sur les feuilletages holomorphes transversalement projectifs, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 815-846 | MR | Zbl | Numdam | DOI

Cité par Sources :