Partially CAT(-1) groups are acylindrically hyperbolic
[Les groups partiellement CAT(-1) sont acylindriquement hyperboliques]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 377-394

In this paper, we show that, if a group G acts geometrically on a geodesically complete CAT(0) space X which contains at least one point with a CAT(-1) neighborhood, then G must be either virtually cyclic or acylindrically hyperbolic. As a consequence, the fundamental group of a compact Riemannian manifold whose sectional curvature is non positive everywhere and negative in at least one point is either virtually cyclic or acylindrically hyperbolic. This statement provides a precise interpretation of an idea expressed by Gromov in his paper Asymptotic invariants of infinite groups.

Dans cet article, nous démontrons que, si un groupe G agit géométriquement sur un espace CAT(0) X qui est géodésiquement complet et qui contient au moins un point admettant un voisinage CAT(-1), alors G doit être ou bien acylindriquement hyperbolique ou bien virtuellement cyclique. Par conséquent, le groupe fondamental d’une variété riemannienne compacte dont la courbure sectionnelle est négative ou nulle partout et strictement négative en au moins un point doit être acylindriquement hyperbolique ou virtuellement cyclique. Cet énoncé propose une interprétation précise et moderne d’une idée de Gromov décrite dans Asymptotic invariants of infinite groups.

DOI : 10.24033/bsmf.2786
Classification : 20F65, 20F67
Keywords: acylindrically hyperbolic groups, CAT(0) groups, rank-one isometries
Mots-clés : groupes acylindriquement hyperboliques, groupes CAT(0), isométries de rang un

Genevois, Anthony 1 ; Stocker, Arnaud 2

1 Département de Mathématiques Bâtiment 307, Faculté des Sciences d’Orsay, Université Paris-Sud, 91405 Orsay Cedex, France.
2 Département de Mathématiques, Faculté des Sciences, Aix-Marseille Université, 3 place Victor Hugo, 13331 Marseille cedex 3, France.
@article{BSMF_2019__147_3_377_0,
     author = {Genevois, Anthony and Stocker, Arnaud},
     title = {Partially {CAT(-1)} groups are acylindrically hyperbolic},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {377--394},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {3},
     doi = {10.24033/bsmf.2786},
     zbl = {1480.20106},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2786/}
}
TY  - JOUR
AU  - Genevois, Anthony
AU  - Stocker, Arnaud
TI  - Partially CAT(-1) groups are acylindrically hyperbolic
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 377
EP  - 394
VL  - 147
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2786/
DO  - 10.24033/bsmf.2786
LA  - en
ID  - BSMF_2019__147_3_377_0
ER  - 
%0 Journal Article
%A Genevois, Anthony
%A Stocker, Arnaud
%T Partially CAT(-1) groups are acylindrically hyperbolic
%J Bulletin de la Société Mathématique de France
%D 2019
%P 377-394
%V 147
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2786/
%R 10.24033/bsmf.2786
%G en
%F BSMF_2019__147_3_377_0
Genevois, Anthony; Stocker, Arnaud. Partially CAT(-1) groups are acylindrically hyperbolic. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 377-394. doi: 10.24033/bsmf.2786

Arzhantseva, G.; Hagen, M. Acylindrical hyperbolicity of cubical small-cancellation groups, arXiv:1603.05725 (2016)

Ballmann, W.; Buyalo, S. Periodic rank one geodesics in Hadamard spaces, Volume 469 (2008), pp. 19-28 | MR | Zbl

Bestvina, M.; Fujiwara, K. Bounded cohomology of subgroups of mapping class groups, Geometry and Topology, Volume 6 (2002), pp. 69-89 | MR | Zbl | DOI

Bestvina, Mladen; Feighn, Mark A hyperbolic Out(𝔽n)-complex, Groups, Geometry, and Dynamics, Volume 4 (2010), pp. 31-58 | DOI

Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999, xxii+643 pages | MR | Zbl | DOI

Buser, Peter Geometry and spectra of compact Riemann surfaces, Springer Science & Business Media, 2010 | MR | Zbl | DOI

Chatterji, I.; Martin, A. A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes, arXiv:1610.06864 (2016) | MR | Zbl

Caprace, Pierre-Emmanuel; Sageev, Michah Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011), pp. 851-891 | MR | Zbl | DOI

Charney, Ruth; Sultan, Harold Contracting boundaries of CAT (0) spaces, J. Topol., Volume 8 (2015), pp. 93-117 | DOI | MR

Calvez, M.; Wiest, B. Acylindrical hyperbolicity and Artin-Tits groups of spherical type, arXiv:1606.07778 (2016)

Dahmani, François; Guirardel, Vincent; Osin, Denis Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, 245, American Mathematical Society, 2017 | MR

Genevois, A. Coning-off CAT(0) cube complexes, arXiv:1603.06513 (2016)

Genevois, A. Contracting isometries of CAT(0) cube complexes and acylindricaly hyperbolicity of diagram groups, arXiv:1610.07791 (2016)

Genevois, A. Algebraic characterisations of negatively-curved special groups and applications to graph braid groups, arXiv:1709.01258 (2017)

Genevois, A. Hyperbolicities in CAT(0) cube complexes, arXiv:1709.08843 (2017) | MR | Zbl

Gromov, M. Hyperbolic groups, Essays in group theory, Volume 8 (1987), p. 2 | MR | Zbl

Gromov, M. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | Zbl

Gruber, D.; Sisto, A. Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, arXiv:1408.4488 (2014) | Numdam | MR | Zbl

Hruska, G Christopher Relative hyperbolicity and relative quasiconvexity for countable groups, Algebraic & Geometric Topology, Volume 10 (2010), pp. 1807-1856 | MR | Zbl | DOI

Kapovich, M.; Leeb, B. On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geometric and Functional Analysis, Volume 5 (1995), pp. 582-603 | MR | Zbl | DOI

Kutateladze, S. A.D. Alexandrov, Selected Works Part II: Intrinsic Geometry of Convex Surfaces, CRC Press, 2005 | MR | Zbl

Lonjou, A. Non simplicité du groupe de Cremona sur tout corps, arXiv:1503.03731 (2015)

Lyndon, C.; Schupp, P. E. Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer, Berlin, 1977 | MR | Zbl

Minasyan, Ashot; Osin, Denis Acylindrical hyperbolicity of groups acting on trees, Mathematische Annalen, Volume 362 (2015), pp. 1055-1105 | DOI

McCammond, J.; Wise, D. Fans and ladders in small cancellation theory, Proc. London Math. Soc., Volume 84 (2002), pp. 599-644 | MR | Zbl | DOI

Osin, D. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., Volume 179 (2006), pp. 6-100 | MR | Zbl

Osin, D. On acylindrical hyperbolicity of groups with positive first 2-Betti number, Bulletin of the London Mathematical Society, Volume 47 (2015), p. 725 | arXiv | MR | Zbl | DOI

Osin, D. Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 851-888 | MR | Zbl | DOI

Sisto, A. Contracting elements and random walks, Journal für die reine und angewandte Mathematik (Crelles Journal) (2016) | MR | Zbl

Sisto, A. Quasi-convexity of hyperbolically embedded subgroups, Mathematische Zeitschrift, Volume 283 (2016), pp. 649-658 | MR | Zbl | DOI

Cité par Sources :