[Les groups partiellement CAT(-1) sont acylindriquement hyperboliques]
In this paper, we show that, if a group acts geometrically on a geodesically complete CAT(0) space which contains at least one point with a CAT(-1) neighborhood, then must be either virtually cyclic or acylindrically hyperbolic. As a consequence, the fundamental group of a compact Riemannian manifold whose sectional curvature is non positive everywhere and negative in at least one point is either virtually cyclic or acylindrically hyperbolic. This statement provides a precise interpretation of an idea expressed by Gromov in his paper Asymptotic invariants of infinite groups.
Dans cet article, nous démontrons que, si un groupe agit géométriquement sur un espace CAT(0) qui est géodésiquement complet et qui contient au moins un point admettant un voisinage CAT(-1), alors doit être ou bien acylindriquement hyperbolique ou bien virtuellement cyclique. Par conséquent, le groupe fondamental d’une variété riemannienne compacte dont la courbure sectionnelle est négative ou nulle partout et strictement négative en au moins un point doit être acylindriquement hyperbolique ou virtuellement cyclique. Cet énoncé propose une interprétation précise et moderne d’une idée de Gromov décrite dans Asymptotic invariants of infinite groups.
Keywords: acylindrically hyperbolic groups, CAT(0) groups, rank-one isometries
Mots-clés : groupes acylindriquement hyperboliques, groupes CAT(0), isométries de rang un
Genevois, Anthony 1 ; Stocker, Arnaud 2
@article{BSMF_2019__147_3_377_0,
author = {Genevois, Anthony and Stocker, Arnaud},
title = {Partially {CAT(-1)} groups are acylindrically hyperbolic},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {377--394},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {3},
doi = {10.24033/bsmf.2786},
zbl = {1480.20106},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2786/}
}
TY - JOUR AU - Genevois, Anthony AU - Stocker, Arnaud TI - Partially CAT(-1) groups are acylindrically hyperbolic JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 377 EP - 394 VL - 147 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2786/ DO - 10.24033/bsmf.2786 LA - en ID - BSMF_2019__147_3_377_0 ER -
%0 Journal Article %A Genevois, Anthony %A Stocker, Arnaud %T Partially CAT(-1) groups are acylindrically hyperbolic %J Bulletin de la Société Mathématique de France %D 2019 %P 377-394 %V 147 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2786/ %R 10.24033/bsmf.2786 %G en %F BSMF_2019__147_3_377_0
Genevois, Anthony; Stocker, Arnaud. Partially CAT(-1) groups are acylindrically hyperbolic. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 377-394. doi: 10.24033/bsmf.2786
Acylindrical hyperbolicity of cubical small-cancellation groups, arXiv:1603.05725 (2016)
Periodic rank one geodesics in Hadamard spaces, Volume 469 (2008), pp. 19-28 | MR | Zbl
Bounded cohomology of subgroups of mapping class groups, Geometry and Topology, Volume 6 (2002), pp. 69-89 | MR | Zbl | DOI
A hyperbolic -complex, Groups, Geometry, and Dynamics, Volume 4 (2010), pp. 31-58 | DOI
Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999, xxii+643 pages | MR | Zbl | DOI
Geometry and spectra of compact Riemann surfaces, Springer Science & Business Media, 2010 | MR | Zbl | DOI
A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes, arXiv:1610.06864 (2016) | MR | Zbl
Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., Volume 21 (2011), pp. 851-891 | MR | Zbl | DOI
Contracting boundaries of spaces, J. Topol., Volume 8 (2015), pp. 93-117 | DOI | MR
Acylindrical hyperbolicity and Artin-Tits groups of spherical type, arXiv:1606.07778 (2016)
Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, 245, American Mathematical Society, 2017 | MR
Coning-off CAT(0) cube complexes, arXiv:1603.06513 (2016)
Contracting isometries of CAT(0) cube complexes and acylindricaly hyperbolicity of diagram groups, arXiv:1610.07791 (2016)
Algebraic characterisations of negatively-curved special groups and applications to graph braid groups, arXiv:1709.01258 (2017)
Hyperbolicities in CAT(0) cube complexes, arXiv:1709.08843 (2017) | MR | Zbl
Hyperbolic groups, Essays in group theory, Volume 8 (1987), p. 2 | MR | Zbl
Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | Zbl
Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, arXiv:1408.4488 (2014) | Numdam | MR | Zbl
Relative hyperbolicity and relative quasiconvexity for countable groups, Algebraic & Geometric Topology, Volume 10 (2010), pp. 1807-1856 | MR | Zbl | DOI
On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geometric and Functional Analysis, Volume 5 (1995), pp. 582-603 | MR | Zbl | DOI
A.D. Alexandrov, Selected Works Part II: Intrinsic Geometry of Convex Surfaces, CRC Press, 2005 | MR | Zbl
Non simplicité du groupe de Cremona sur tout corps, arXiv:1503.03731 (2015)
Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer, Berlin, 1977 | MR | Zbl
Acylindrical hyperbolicity of groups acting on trees, Mathematische Annalen, Volume 362 (2015), pp. 1055-1105 | DOI
Fans and ladders in small cancellation theory, Proc. London Math. Soc., Volume 84 (2002), pp. 599-644 | MR | Zbl | DOI
Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., Volume 179 (2006), pp. 6-100 | MR | Zbl
On acylindrical hyperbolicity of groups with positive first -Betti number, Bulletin of the London Mathematical Society, Volume 47 (2015), p. 725 | arXiv | MR | Zbl | DOI
Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 851-888 | MR | Zbl | DOI
Contracting elements and random walks, Journal für die reine und angewandte Mathematik (Crelles Journal) (2016) | MR | Zbl
Quasi-convexity of hyperbolically embedded subgroups, Mathematische Zeitschrift, Volume 283 (2016), pp. 649-658 | MR | Zbl | DOI
Cité par Sources :






