[Quelques remarques sur l’optimalité de la condition de Bruno-Rüssmann]
We prove that the Bruno-Rüssmann condition is optimal for the analytic preservation of a quasi-periodic invariant curve for an analytic twist map. The proof is based on Yoccoz’s corresponding result for analytic circle diffeomorphisms and the uniqueness of invariant curves with a given irrational rotation number. We also prove a similar result for analytic Tonelli Hamiltonian flow with degrees of freedom; for we only obtain a weaker result which recovers and slightly improves a theorem of Bessi.
Nous montrons que la condition de Bruno-Rüssmann est optimale pour la persistance de courbe invariante quasi-périodique analytique par une application twist analytique. La preuve repose sur le résultat analogue de Yoccoz pour un difféomorphisme analytique du cercle et sur l’unicité des courbes invariantes de nombre de rotation irrationnel. Nous montrons également un résultat similaire pour les Hamiltoniens Tonelli à degrés de liberté ; pour , nous obtenons un résultat plus faible qui généralise légèrement un théorème de Bessi.
Keywords: KAM theory, Twist maps, Tonelli Hamiltonians
Mots-clés : Théorie KAM
Bounemoura, Abed 1
@article{BSMF_2019__147_2_341_0,
author = {Bounemoura, Abed},
title = {Some remarks on the optimality of the {Bruno-R\"ussmann} condition},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {341--353},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {2},
doi = {10.24033/bsmf.2784},
mrnumber = {3982280},
zbl = {1427.37048},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2784/}
}
TY - JOUR AU - Bounemoura, Abed TI - Some remarks on the optimality of the Bruno-Rüssmann condition JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 341 EP - 353 VL - 147 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2784/ DO - 10.24033/bsmf.2784 LA - en ID - BSMF_2019__147_2_341_0 ER -
%0 Journal Article %A Bounemoura, Abed %T Some remarks on the optimality of the Bruno-Rüssmann condition %J Bulletin de la Société Mathématique de France %D 2019 %P 341-353 %V 147 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2784/ %R 10.24033/bsmf.2784 %G en %F BSMF_2019__147_2_341_0
Bounemoura, Abed. Some remarks on the optimality of the Bruno-Rüssmann condition. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 341-353. doi: 10.24033/bsmf.2784
An analytic counterexample to the KAM theorem, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 317-333 | MR | Zbl | DOI
Analytical Form of Differential Equations I, Trans. Moscow Math. Soc., Volume 25 (1971), pp. 131-288 | Zbl | MR
Analytical Form of Differential Equations II, Trans. Moscow Math. Soc., Volume 26 (1972), pp. 199-239 | Zbl | MR
Local Methods in Nonlinear Differential Equations, Springer, 1989 | MR | Zbl | DOI
The critical function for the semistandard map, Nonlinearity, Volume 7 (1994), pp. 219-229 | MR | Zbl | DOI
Weak mixing for reparameterized linear flows on the torus, Ergodic Theory Dynam. Systems, Volume 22 (2002), pp. 187-201 | MR | Zbl | DOI
Uniqueness of invariant Lagrangian graphs in a homology class or a cohomology class, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2009), pp. 659-680 | MR | Zbl | Numdam
Analytic destruction of invariant circles, Ergodic Theory Dynam. Systems, Volume 14 (1994), pp. 267-298 | MR | Zbl | DOI
Invariant curves for exact symplectic twist maps of the cylinder with Bryuno rotation numbers, Nonlinearity, Volume 28 (2015), pp. 2555-2585 | MR | Zbl | DOI
Siegel discs, Herman rings and the Arnold family, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 3661-3683 | MR | Zbl | DOI
Symplectic twist maps, Advanced Series in Nonlinear Dynamics, 18, World Scientific Publishing Co., Inc., 2001, xviii+305 pages (Global variational techniques) | MR | Zbl | DOI
Sur les courbes invariantes par les difféomorphismes de l’anneau, Volume 1, Asterisque, Volume 103–104 (1983) | MR | Zbl | Numdam
On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications, Seminar on dynamical systems (1994), pp. 96-116 (Birkhäuser) | MR | Zbl | DOI
Critical functions for complex analytic maps, J. Phys. A, Volume 23 (1990), pp. 3447-3474 | MR | Zbl | DOI
A criterion for the non existence of invariant circles, Publ. Math. IHES, Volume 63 (1986) | MR | Zbl | Numdam | DOI
Destruction of invariant circles, Erg. Th. Dyn. Sys., Volume 8 (1988) | MR | Zbl
Diophantine conditions and real or complex Brjuno functions, Noise, oscillators and algebraic randomness (Chapelle des Bois, 1999) (Lecture Notes in Phys.), Volume 550, Springer, 2000, pp. 324-342 | MR | Zbl | DOI
Fixed points and circle maps, Acta Math., Volume 179 (1997), pp. 243-294 | MR | Zbl | DOI
Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., Volume 6 (2001), pp. 119-204 | MR | Zbl | DOI
On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, 1975, p. 598-624. Lecture Notes in Phys., Vol. 38 | MR | Zbl | DOI
On the one-dimensional Schrodinger equation with a quasi-periodic potential, Ann. NY Acad. Sci., Volume 357 (1980), pp. 91-107 | MR | Zbl | DOI
Non-degeneracy in the perturbation theory of integrable dynamical systems, Number theory and dynamical systems, Lond. Math. Soc. Lect. Note Ser. 134, 5–18, 1989 | MR | Zbl | DOI
On the Frequencies of Quasi Periodic Solutions of Analytic Nearly Integrable Hamiltonian Systems, Seminar on Dynamical Systems (Kuksin, S.; Lazutkin, V.; Pöschel, J., eds.) (Progress in Nonlinear Differential Equations and Their Applications), Volume 12, Birkhäuser, 1994, pp. 160-183 | MR | Zbl | DOI
The Kolmogorov-Arnold-Moser Theorem, Mathematical Physics Electronic Journal, Volume 10 (2004), pp. 1-37 | MR | Zbl
Action-minimizing methods in Hamiltonian dynamics, Mathematical Notes, 50, Princeton University Press, Princeton, NJ, 2015, xii+115 pages (An introduction to Aubry-Mather theory) | MR
Introduction to the perturbation theory of Hamiltonian systems, Springer Monographs in Mathematics, Springer, 2010, x+211 pages | MR | Zbl | DOI
Linéarisation des germes de difféomorphismes holomorphes de , C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988), pp. 55-58 | MR | Zbl
Small divisors in dimension one (Petits diviseurs en dimension 1), Astérisque. 231. Société Math. de France, 242 p., 1995 | Zbl | Numdam | MR
Cité par Sources :






