Generalized Curie-Weiss model and quadratic pressure in ergodic theory
[Généralisation du modèle de Curie-Weiss et Pression quadratique en théorie ergodique]
Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 197-219

We explain the Curie-Weiss model in statistical mechanics within an ergodic viewpoint. More precisely, we simultaneously define in {-1,+1}, on the one hand a generalized Curie-Weiss model within the statistical mechanics viewpoint and on the other hand, the quadratic free energy and quadratic pressure within the ergodic theory viewpoint. We show that there are finitely many invariant measures that maximize the quadratic free energy. They are all dynamical Gibbs measures. Moreover, the probabilistic Gibbs measures for the generalized Curie-Weiss model converge to a determined combination of the (dynamical) conformal measures associated with these dynamical Gibbs measures. The standard Curie-Weiss model is a particular case of our generalized Curie-Weiss model. An ergodic viewpoint over the Curie-Weiss-Potts model is also given.

On explique ici un modèle généralisé de Curie-Weiss (champ moyen) en utilisant le vocabulaire de la théorie ergodique. On introduit le concept de pression quadratique en théorie ergodique et on montre que pour tout potentiel Hölder dans le sous-shift unilatère {-1,+1}, il n’y a qu’un nombre fini de mesures invariantes qui maximisent la pression quadratique et, que ce sont toutes des mesures d’équilibre pour un multiple du potentiel. On montre que la limite thermodynamique des mesures de Gibbs associées à l’Hamiltonien en champ moyen convergent vers une combinaison des mesures conformes associées à chaque mesure qui maximise la pression quadratique. Le cas standard de Curie-Weiss s’obtient pour un exemple particulier de potentiel. Enfin, le modèle de Curie-Weiss-Potts est également expliqué avec le vocabulaire de la théorie ergodique.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2779
Classification : 37A35, 37A50, 37A60, 82B20, 82B30, 82C26
Keywords: thermodynamic formalism, equilibrium states, Curie-Weiss model, Curie-Weiss-Potts model, Gibbs measure, phase transition
Mots-clés : formalisme thermodynamique, état d’équilibre, modèles de Curie-Weiss et de Curie-Weiss-Potts, mesure de Gibbs, transition de phase

Leplaideur, Renaud 1, 2 ; Watbled, Frédérique 3

1 ISEA, Université de Nouvelle Calédonie, 145, Avenue James Cook – BP R4 98 851 – Nouméa Cedex. Nouvelle Calédonie
2 LMBA, UMR6205, Université de Brest
3 LMBA, UMR 6205, Université de Bretagne Sud, Campus de Tohannic, BP 573, 56017 Vannes, France
@article{BSMF_2019__147_2_197_0,
     author = {Leplaideur, Renaud and Watbled, Fr\'ed\'erique},
     title = {Generalized {Curie-Weiss} model and quadratic pressure in ergodic theory},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {197--219},
     year = {2019},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {2},
     doi = {10.24033/bsmf.2779},
     mrnumber = {3982275},
     zbl = {1430.37007},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2779/}
}
TY  - JOUR
AU  - Leplaideur, Renaud
AU  - Watbled, Frédérique
TI  - Generalized Curie-Weiss model and quadratic pressure in ergodic theory
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 197
EP  - 219
VL  - 147
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2779/
DO  - 10.24033/bsmf.2779
LA  - en
ID  - BSMF_2019__147_2_197_0
ER  - 
%0 Journal Article
%A Leplaideur, Renaud
%A Watbled, Frédérique
%T Generalized Curie-Weiss model and quadratic pressure in ergodic theory
%J Bulletin de la Société Mathématique de France
%D 2019
%P 197-219
%V 147
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2779/
%R 10.24033/bsmf.2779
%G en
%F BSMF_2019__147_2_197_0
Leplaideur, Renaud; Watbled, Frédérique. Generalized Curie-Weiss model and quadratic pressure in ergodic theory. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 2, pp. 197-219. doi: 10.24033/bsmf.2779

Bedaride, N.; Hubert, P.; Leplaideur, R. Thermodynamic formalism and substitutions, ArXiv e-prints (2015) | arXiv

Bruin, H.; Leplaideur, R. Renormalization, freezing phase transitions and Fibonacci quasicrystals, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015), pp. 739-763 | MR | Zbl | Numdam | DOI

Bowen, R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 1975, i+108 pages (2nd ed. - 2008 by JR Chazottes) | MR | Zbl | DOI

Broise, Anne Transformations dilatantes de l’intervalle et théorèmes limites, Astérisque (1996), pp. 1-109 (Études spectrales d’opérateurs de transfert et applications) | MR | Numdam | Zbl

Costeniuc, Marius; Ellis, Richard S.; Touchette, Hugo Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model, J. Math. Phys., Volume 46 (2005), p. 063301, 25 | MR | Zbl | DOI

Coronel, D.; Rivera-Letelier, J. Low-temperature phase transitions in the quadratic family., Adv. Math., Volume 248 (2013), pp. 453-494 | MR | Zbl | DOI

Dembo, Amir; Zeitouni, Ofer Large deviations techniques and applications, Springer, 2010, xvi + 396 pages | Zbl | MR | DOI

Ellis, Richard S. Entropy, large deviations, and statistical mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 2006, xiv+364 pages (Reprint of the 1985 original) | MR | Zbl | DOI

Ellis, Richard S.; Newman, Charles M. Limit theorems for sums of dependent random variables occurring in statistical mechanics, Z. Wahrsch. Verw. Gebiete, Volume 44 (1978), pp. 117-139 | MR | Zbl | DOI

Ellis, Richard S.; Newman, Charles M. The statistics of Curie-Weiss models, J. Statist. Phys., Volume 19 (1978), pp. 149-161 | MR | DOI

Erdélyi, A. Asymptotic expansions, Dover Publications, Inc., New York, 1956, vi+108 pages | MR | Zbl

Ellis, Richard S.; Wang, Kongming Limit theorems for the empirical vector of the Curie-Weiss-Potts model., Stochastic Processes Appl., Volume 35 (1990), pp. 59-79 | Zbl | MR | DOI

Georgii, Hans-Otto Gibbs measures and phase transitions, de Gruyter Studies in Mathematics, 9, Walter de Gruyter & Co., 2011, xiv+545 pages | MR | Zbl | DOI

Hennion, Hubert; Hervé, Loïc Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, 1766, Springer, 2001, viii+145 pages | MR | Zbl | DOI

Hubbard, J. Calculation of Partition Functions, Phys. Rev. Lett., Volume 3 (1959), pp. 77-78 http://link.aps.org/doi/10.1103/PhysRevLett.3.77 | DOI

Ionescu Tulcea, C. T.; Marinescu, G. Théorie ergodique pour des classes d’opérations non complètement continues, Ann. of Math. (2), Volume 52 (1950), pp. 140-147 | DOI | MR | Zbl

Keller, Gerhard Equilibrium states in ergodic theory., Cambridge University Press, 1998, ix + 178 pages | Zbl | MR | DOI

Leplaideur, Renaud Chaos: butterflies also generate phase transitions, J. Stat. Phys., Volume 161 (2015), pp. 151-170 | MR | Zbl | DOI

Makarov, N.; Smirnov, S. On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc. (2), Volume 67 (2003), pp. 417-432 | MR | Zbl | DOI

Orey, Steven Large deviations for the empirical field of Curie-Weiss models, Stochastics, Volume 25 (1988), pp. 3-14 | MR | Zbl | DOI

Parry, W.; Pollicott, M. Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, SMF, 1990 | MR | Zbl | Numdam

Rassoul-Agha, Firas; Seppäläinen, Timo A course on large deviations with an introduction to Gibbs measures, Graduate Studies in Mathematics, 162, American Mathematical Society, 2015, xiv+318 pages | MR | DOI

Ruelle, D. Thermodynamic formalism, Cambridge Mathematical Library, Cambridge University Press, 2004, xx+174 pages (The mathematical structures of equilibrium statistical mechanics) | MR | Zbl | DOI

Ruelle, D. Statistical mechanics of a one-dimensional lattice gas., Commun. Math. Phys., Volume 9 (1968), pp. 267-278 | MR | Zbl | DOI

Ruelle, D. Statistical mechanics, World Scientific Publishing Co. Inc., River Edge, NJ, 1999, xvi+219 pages (Rigorous results, Reprint of the 1989 edition) | MR | Zbl

Sarig, O. Continuous phase transitions for dynamical systems, Comm. Math. Phys., Volume 267 (2006), pp. 631-667 | MR | Zbl | DOI

Sinaĭ, Y. Gibbs measures in ergodic theory,, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 | MR | Zbl

Sinaĭ, Y. Theory of phase transitions: rigorous results, International Series in Natural Philosophy, 108, Pergamon Press, 1982, viii+150 pages (Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász) | MR | Zbl

Stratonovič, R. L. A method for the computation of quantum distribution functions, Dokl. Akad. Nauk SSSR (N.S.), Volume 115 (1957), pp. 1097-1100 | MR | Zbl

Thaler, Maximilian Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., Volume 37 (1980), pp. 303-314 | MR | Zbl | DOI

Walters, Peter An introduction to ergodic theory. Paperback ed., Springer, 2000, ix + 250 pages | Zbl

Cité par Sources :