The Riemann-Hilbert mapping for 𝔰𝔩2 systems over genus two curves
Bulletin de la Société Mathématique de France, Volume 147 (2019) no. 1, pp. 159-195

We prove in two different ways that the monodromy map from the space of irreducible 𝔰𝔩2 differential systems on genus two Riemann surfaces, towards the character variety of SL2 representations of the fundamental group, is a local diffeomorphism. We also show that this is no longer true in the higher genus case. Our work is motivated by a question raised by Étienne Ghys about Margulis’ problem: the existence of curves of negative Euler characteristic in compact quotients of SL2().

Nous montrons de deux manières différentes que l’application monodromie, depuis l’espace des 𝔰𝔩2 systèmes différentiels irréductibles sur les surfaces de Riemann de genre deux, vers la variété de caractères des SL2 représentations du groupe fondamental, est un difféomorphisme local. Nous montrons aussi que ce n’est plus le cas en genre supérieur. Notre travail est motivé par une question d’Étienne Ghys à propos d’un problème de Margulis  : l’existence de courbes de caractéristique d’Euler négative dans les quotients compacts de SL2().

Received:
Revised:
Accepted:
Published online:
DOI: 10.24033/bsmf.2778
Classification: 34Mxx, 14Q10, 32G34, 53A30, 14H15
Keywords: $\mathfrak{sl}_2$ systems over curves, monodromy, Riemann-Hilbert, projective structures, holomorphic connections, foliations
Mots-clés : $\mathfrak{sl}_2$-systèmes sur les courbes, monodromie, Riemann-Hilbert, structures projectives, connexions holomorphes, feuilletages

Calsamiglia, Gabriel 1; Deroin, Bertrand 2; Heu, Viktoria 3; Loray, Frank 4

1 Instituto de Matemática e Estatística, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis, s/n, Bloco H – Campus do Gragoatá São Domingos-Niterói – RJ – CEP: 24.210-201
2 Laboratoire AGM – CNRS/Université Cergy-Pontoise, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise, France
3 IRMA, 7 rue René-Descartes, 67084 Strasbourg Cedex, France
4 Univ Rennes, CNRS, IRMAR – UMR 6625, 35000 Rennes, France
@article{BSMF_2019__147_1_159_0,
     author = {Calsamiglia, Gabriel and Deroin, Bertrand and Heu, Viktoria and Loray, Frank},
     title = {The {Riemann-Hilbert} mapping for $\protect \mathfrak{sl}_2$ systems over genus two curves},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {159--195},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {147},
     number = {1},
     year = {2019},
     doi = {10.24033/bsmf.2778},
     mrnumber = {3943741},
     zbl = {1422.30063},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2778/}
}
TY  - JOUR
AU  - Calsamiglia, Gabriel
AU  - Deroin, Bertrand
AU  - Heu, Viktoria
AU  - Loray, Frank
TI  - The Riemann-Hilbert mapping for $\protect \mathfrak{sl}_2$ systems over genus two curves
JO  - Bulletin de la Société Mathématique de France
PY  - 2019
SP  - 159
EP  - 195
VL  - 147
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2778/
DO  - 10.24033/bsmf.2778
LA  - en
ID  - BSMF_2019__147_1_159_0
ER  - 
%0 Journal Article
%A Calsamiglia, Gabriel
%A Deroin, Bertrand
%A Heu, Viktoria
%A Loray, Frank
%T The Riemann-Hilbert mapping for $\protect \mathfrak{sl}_2$ systems over genus two curves
%J Bulletin de la Société Mathématique de France
%D 2019
%P 159-195
%V 147
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2778/
%R 10.24033/bsmf.2778
%G en
%F BSMF_2019__147_1_159_0
Calsamiglia, Gabriel; Deroin, Bertrand; Heu, Viktoria; Loray, Frank. The Riemann-Hilbert mapping for $\protect \mathfrak{sl}_2$ systems over genus two curves. Bulletin de la Société Mathématique de France, Volume 147 (2019) no. 1, pp. 159-195. doi: 10.24033/bsmf.2778

Brunella, M. Birational Theory of Foliations, IMPA Monographs, Springer, 2015 | MR | Zbl

Calsamiglia, G.; Deroin, B.; Francaviglia, S. Branched projective structures with Fuchsian holonomy, Geometry and Topology, Volume 18 (2014), pp. 379-446 | MR | Zbl | DOI

Drach, J Essai sur une théorie générale de l’intégration et sur la classification des transcendantes, Ann. Sci. Écoles Normale Sup., Volume 15 (1898), pp. 243-384 | MR | JFM | Numdam | DOI

Gallo, D.; Kapovich, M.; Marden, A. The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. Second Series, Volume 151 (2000), pp. 625-704 | MR | Zbl | DOI

Goldman, W. Topological components of spaces of representations, Invent. Math., Volume 93 (1988), pp. 557-607 | MR | Zbl | DOI

Goldman, W. M. Ergodic theory on moduli spaces, Ann. of Math., Volume 146 (1997), pp. 475-507 | MR | Zbl | DOI

Heu, V.; Loray, F. Flat rank 2 vector bundles on genus 2 curves, Memoirs of the AMS (to appear) (arXiv:1401.2449) | Zbl

Huckleberry, A. T.; Margulis, G. A. Invariant analytic hypersurfaces, Invent. Math., Volume 71 (1983), pp. 235-240 | MR | Zbl | DOI

McMullen, C. Moduli spaces of isoperiodic forms on Riemann surfaces, Duke Math. J., Volume 163 (2014), pp. 2271-2323 | MR | Zbl | DOI

Narasimhan, M. S.; Ramanan, S. Moduli of Vector Bundles on a Compact Riemann Surface, Ann. of Math., Volume 89 (1969), pp. 14-51 | MR | Zbl | DOI

Okamoto, K. Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 33 (1986), pp. 575-618 | MR | Zbl

Simpson, C. T. Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math., Volume 80 (1994), pp. 5-79 | MR | Zbl | Numdam | DOI

Cited by Sources: