[On orbit configuration spaces associated to finite subgroups of ]
On étudie des espaces de configuration liés à l’action d’un groupe fini d’homographies de . On construit une connexion plate sur cet espace à valeurs dans une algèbre de Lie . On établit un isomorphisme d’algèbres de Lie filtrées entre , l’algèbre de Lie de Malcev du groupe fondamental de cet espace et le complété pour le degré du gradué associé à cette algèbre de Lie. Ceci est obtenu grâce à la représentation de monodromie d’une connexion et une étude du groupe fondamental.
We study the configuration spaces related to the action of a finite group of homographies of (). We construct a flat connexion on this space with values in a Lie algebra . We prove the existence of an isomorphism of filtered Lie algebras between and the Lie algebra of Malcev of the fundamental group of this space. There results are obtained thanks to the monodromy representation of a connexion and a study of the fundamental group.
Revised:
Accepted:
Published online:
DOI: 10.24033/bsmf.2777
Mots-clés : Espaces de configuration tordus, relations entre tresses, connexions de type Knizhnik-Zamolodochikov, algèbres de Lie de Malcev, 1-formalité
Keywords: Orbit configuration space, braid relations, Knizhnik-Zamolodochikov type connections, Malcev Lie algebras, 1-formality
Maassarani, Mohamad 1
@article{BSMF_2019__147_1_123_0,
author = {Maassarani, Mohamad},
title = {Sur certains espaces de configuration associ\'es aux sous-groupes finis de $\protect \mathrm{PSL}_2(\protect \mathbb{C})$},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {123--157},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {1},
year = {2019},
doi = {10.24033/bsmf.2777},
mrnumber = {3943740},
zbl = {1477.55013},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2777/}
}
TY - JOUR
AU - Maassarani, Mohamad
TI - Sur certains espaces de configuration associés aux sous-groupes finis de $\protect \mathrm{PSL}_2(\protect \mathbb{C})$
JO - Bulletin de la Société Mathématique de France
PY - 2019
SP - 123
EP - 157
VL - 147
IS - 1
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2777/
DO - 10.24033/bsmf.2777
LA - fr
ID - BSMF_2019__147_1_123_0
ER -
%0 Journal Article
%A Maassarani, Mohamad
%T Sur certains espaces de configuration associés aux sous-groupes finis de $\protect \mathrm{PSL}_2(\protect \mathbb{C})$
%J Bulletin de la Société Mathématique de France
%D 2019
%P 123-157
%V 147
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2777/
%R 10.24033/bsmf.2777
%G fr
%F BSMF_2019__147_1_123_0
Maassarani, Mohamad. Sur certains espaces de configuration associés aux sous-groupes finis de $\protect \mathrm{PSL}_2(\protect \mathbb{C})$. Bulletin de la Société Mathématique de France, Volume 147 (2019) no. 1, pp. 123-157. doi: 10.24033/bsmf.2777
Theory of braids, Ann. of Math. (2), Volume 48 (1947), pp. 101-126 | MR | Zbl | DOI
Koszul DG-algebras arising from configuration spaces, Geom. Funct. Anal., Volume 4 (1994), pp. 119-135 | MR | Zbl | DOI
Universal KZB equations : the elliptic case, Algebra, arithmetic, and geometry : in honor of Yu. I. Manin. Vol. I (Progr. Math.), Volume 269, Birkhäuser Boston, Inc., 2009, pp. 165-266 | MR | Zbl | DOI
Orbit configuration spaces associated to discrete subgroups of , J. Pure Appl. Algebra, Volume 213 (2009), pp. 2289-2300 | MR | Zbl | DOI
Monodromy of fiber-type arrangements and orbit configuration spaces, Forum Math., Volume 13 (2001), pp. 505-530 | MR | Zbl | DOI
On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningrad Math. J., Volume 2 (1991), pp. 829-860 | MR | Zbl
Quasi-reflection algebras and cyclotomic associators, Selecta Math. (N.S.), Volume 13 (2007), pp. 391-463 | MR | Zbl | DOI
Elliptic associators, Selecta Math. (N.S.), Volume 20 (2014), pp. 491-584 | MR | Zbl | DOI
Flat connections on configuration spaces and braid groups of surfaces, Adv. Math., Volume 252 (2014), pp. 204-226 | MR | Zbl | DOI
A compactification of configuration spaces, Ann. of Math. (2), Volume 139 (1994), pp. 183-225 | MR | Zbl | DOI
Les nœuds de dimensions supérieures, Bull. Soc. Math. France, Volume 93 (1965), pp. 225-271 | MR | Zbl | Numdam | DOI
On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J., Volume 92 (1983), pp. 21-37 http://projecteuclid.org/euclid.nmj/1118787354 | MR | Zbl | DOI
On the rational homotopy type of configuration spaces, Ann. of Math. (2), Volume 139 (1994), pp. 227-237 | MR | Zbl | DOI
Groupes et géométries, 2010–2014, 401 pages http://www.math.u-psud.fr/... (Cours de seconde année de mastère)
On the associated graded ring of a group ring, J. Algebra, Volume 10 (1968), pp. 411-418 | MR | Zbl | DOI
Rational homotopy theory, Ann. of Math. (2), Volume 90 (1969), pp. 205-295 | MR | Zbl | DOI
Complements of codimension-two submanifolds. II. Homology below the middle dimension, Illinois J. Math., Volume 25 (1981), pp. 470-497 | MR | Zbl | DOI
Cited by Sources:






