On ergodic averages for parabolic product flows
[Les moyennes ergodiques des produits cartésiens des flots paraboliques]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 675-690

We consider a direct product of a suspension flow over a substitution dynamical system and an arbitrary ergodic flow and give quantitative estimates for the speed of convergence for ergodic integrals of such systems. Our argument relies on new uniform estimates of the spectral measure for suspension flows over substitution dynamical systems. The paper answers a question by Jon Chaika.

Pour le produit cartésien d’un flot ergodique arbitraire avec un flot de suspension sur un système de substitution, nous estimons la vitesse de convergence des intégrales ergodiques. Notre argument se base sur les bornes uniformes pour les mesures spectrales des flots de suspension sur les systèmes de substitution. Notre résultat répond à une question de Jon Chaika.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2770
Classification : 37A30, 37B10
Keywords: Substitution dynamical system, spectral measure, Hölder continuity
Mots-clés : Système de substitution, mesure spectrale, continuité de Hölder

Bufetov, Alexander I. 1 ; Solomyak, Boris 2

1 Aix-Marseille Université, CNRS Centrale Marseille, I2M, UMR 7373 39 rue F. Joliot Curie Marseille France Steklov Mathematical Institute of RAS Moscow Russia Institute for Information Transmission Problems Moscow Russia National Research University Higher School of Economics Moscow Russia The Chebyshev Laboratory Saint-Petersburg State University Saint Petersburg Russia
2 Bar-Ilan University Department of Mathematics Ramat-Gan Israel
@article{BSMF_2018__146_4_675_0,
     author = {Bufetov, Alexander I. and Solomyak, Boris},
     title = {On ergodic averages for parabolic product flows},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {675--690},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {4},
     doi = {10.24033/bsmf.2770},
     mrnumber = {3936539},
     zbl = {1414.37001},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2770/}
}
TY  - JOUR
AU  - Bufetov, Alexander I.
AU  - Solomyak, Boris
TI  - On ergodic averages for parabolic product flows
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 675
EP  - 690
VL  - 146
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2770/
DO  - 10.24033/bsmf.2770
LA  - en
ID  - BSMF_2018__146_4_675_0
ER  - 
%0 Journal Article
%A Bufetov, Alexander I.
%A Solomyak, Boris
%T On ergodic averages for parabolic product flows
%J Bulletin de la Société Mathématique de France
%D 2018
%P 675-690
%V 146
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2770/
%R 10.24033/bsmf.2770
%G en
%F BSMF_2018__146_4_675_0
Bufetov, Alexander I.; Solomyak, Boris. On ergodic averages for parabolic product flows. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 675-690. doi: 10.24033/bsmf.2770

[1] B. Adamczewski, “Symbolic discrepancy and self-similar dynamics”, Annales Inst. Fourier, 54 (2004) 7, p. 2201–2234 | MR | Zbl | Numdam

[2] S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee & A. Siegel, “On the Pisot substitution conjecture. Mathematics of aperiodic order”, Progr. Math., 309, Birkhaeuser/Springer, 2015, pp. 33–72 | MR

[3] X. Bressaud, A. I. Bufetov & P. Hubert, “Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1”, Proceedings of the London Mathematical Society, 109 (2014) (2), p. 483–522 | MR | Zbl

[4] M. Barge & B. Diamond, “Coincidence for substitutions of Pisot type”, Bulletin SMF 130 (2002), p. 591–626 | MR | Zbl | Numdam

[5] A. I. Bufetov & Boris Solomyak, “On the modulus of continuity for spectral measures in substitution dynamics”, Advances in Mathematics 260 (2014), p. 84–129 | MR | Zbl

[6] A. Clark & L. Sadun, “When size matters: subshifts and their related tiling spaces”, Ergodic Theory Dynam. Systems 23 (2003), p. 1043–1057 | MR | Zbl

[7] P. Erdős, “On the smoothness properties of Bernoulli convolutions”, Amer. J. Math. 62 (1940), p. 180–186 | MR | JFM

[8] S. Ferenczi, C. Mauduit & A. Nogueira, “Substitution dynamical systems: algebraic characterization of eigenvalues”, Annales scientifiques de l’École Normale Supérieure, Sér. 4, 29 (1996), 4, p. 519–533 | MR | Zbl | Numdam

[9] P. N. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel, in: Lecture Notes in Math., vol. 1794, Springer, 2002 | MR | Zbl

[10] M. Hollander & B. Solomyak, “Two-symbol Pisot substitutions have pure discrete spectrum”, Ergodic Theory Dynam. Systems, 23 (2003) 2, p. 533–540 | MR | Zbl

[11] J. P. Kahane, “Sur la distribution de certaines series aleatoires”, Colloque Th. Nombres [1969, Bordeaux], Bull. Soc. math. France, Mémoire 25 (1971), p. 119–122 | Zbl | Numdam | MR

[12] M. Queffelec, Substitution Dynamical Systems – Spectral Analysis. Second edition. Lecture Notes in Math., vol. 1294, Springer, 2010 | MR | Zbl

[13] B. Solomyak, “On the spectral theory of adic transformations. Representation theory and dynamical systems”, Adv. Soviet Math. 9, Amer. Math. Soc., 1992, pp. 217–230 | MR | Zbl

[14] B. Solomyak, “Dynamics of self-similar tilings”, Ergodic Theory Dynam. Systems 17 (1997), 3, p. 695–738 | MR | Zbl

[15] R. S. Strichartz, “Fourier asymptotics of fractal measures”, J. Funct. Anal. 89 (1990), 1, p. 154–187 | MR | Zbl

Cité par Sources :