On isoperimetric inequality in Arakelov geometry
[Sur l’inégalité isopérimétrique en géométrie d’Arakelov]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 649-673

We establish an isoperimetric inequality in an integral form and deduce a relative version of Brunn-Minkowski inequality in the Arakelov geometry setting.

On établit une inégalité isopérimétrique sous une forme d’intégration dans le cadre de géométrie d’Arakelov et en déduit une version relative de l’inégalité de Brunn-Minkowski dans le même cadre.

DOI : 10.24033/bsmf.2769
Classification : 14G40, 11G30
Keywords: Arakelov geometry, isoperimetric inequality, Brunn-Minkowski inequality
Mots-clés : Géométrie d’Arakelov, inégalité isopérimétrique, inégalité de Brunn-Minkowski

Chen, Huayi 1

1 Université Paris Diderot, Sorbonne Université, CNRS Institut de Mathématiques de Jussieu-Paris Rive Gauche, IMJ-PRG F-75013 Paris France
@article{BSMF_2018__146_4_649_0,
     author = {Chen, Huayi},
     title = {On isoperimetric inequality in {Arakelov} geometry},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {649--673},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {4},
     doi = {10.24033/bsmf.2769},
     mrnumber = {3936538},
     zbl = {1435.14026},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2769/}
}
TY  - JOUR
AU  - Chen, Huayi
TI  - On isoperimetric inequality in Arakelov geometry
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 649
EP  - 673
VL  - 146
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2769/
DO  - 10.24033/bsmf.2769
LA  - en
ID  - BSMF_2018__146_4_649_0
ER  - 
%0 Journal Article
%A Chen, Huayi
%T On isoperimetric inequality in Arakelov geometry
%J Bulletin de la Société Mathématique de France
%D 2018
%P 649-673
%V 146
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2769/
%R 10.24033/bsmf.2769
%G en
%F BSMF_2018__146_4_649_0
Chen, Huayi. On isoperimetric inequality in Arakelov geometry. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 649-673. doi: 10.24033/bsmf.2769

[1] A. Abbes & T. Bouche – “Théorème de Hilbert-Samuel “arithmétique””, Université de Grenoble. Annales de l’Institut Fourier 45 (1995), 2, p. 375–401. | MR | Zbl | Numdam

[2] S. Alesker, S. Dar & V. Milman – “A remarkable measure preserving diffeomorphism between two convex bodies in Rn”, Geometriae Dedicata 74 (1999), 2, p. 201–212. | MR | Zbl

[3] F. Barthe – “Autour de l’inégalité de Brunn-Minkowski”, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6 12 (2003), 2, p. 127–178. | MR | Zbl | Numdam

[4] H. Bergström – “A triangle-inequality for matrices”, in Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, p. 264–267. | MR | Zbl

[5] V. G. BerkovichSpectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990. | MR | Zbl

[6] D. Bertrand – “Minimal heights and polarizations on group varieties”, Duke Mathematical Journal 80 (1995), 1, p. 223–250. | MR | Zbl

[7] S. Bobkov & M. Madiman – “Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures”, Journal of Functional Analysis 262 (2012), 7, p. 3309–3339. | MR | Zbl

[8] T. Bonnesen & W. FenchelTheorie der konvexen Körper, Chelsea Publishing Co., 1971, Reissue of the 1948 reprint of the 1934 original. | MR | Zbl

[9] S. Boucksom & H. Chen – “Okounkov bodies of filtered linear series”, Compositio Mathematica 147 (2011), 4, p. 1205–1229. | MR | Zbl

[10] S. Boucksom, C. Favre & M. Jonsson – “Differentiability of volumes of divisors and a problem of Teissier”, Journal of Algebraic Geometry 18 (2009), 2, p. 279–308. | MR | Zbl

[11] Y. Brenier – “Décomposition polaire et réarrangement monotone des champs de vecteurs”, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 305 (1987), 19, p. 805–808. | MR | Zbl

[12] Y. Brenier – “Polar factorization and monotone rearrangement of vector-valued functions”, Communications on Pure and Applied Mathematics 44 (1991), 4, p. 375–417. | MR | Zbl

[13] Y. D. Burago & V. A. ZalgallerGeometric inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285, Springer, 1988, Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics. | MR | Zbl

[14] H. Chen – “Arithmetic Fujita approximation”, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 43 (2010), 4, p. 555–578. | MR | Zbl | Numdam

[15] H. Chen – “Differentiability of the arithmetic volume function”, Journal of the London Mathematical Society. Second Series 84 (2011), 2, p. 365–384. | MR | Zbl

[16] H. Chen – “Majorations explicites des fonctions de Hilbert–Samuel géométrique et arithmétique”, Mathematische Zeitschrift 279 (2015), 1–2, p. 99–137. | MR | Zbl

[17] H. Chen – “Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste”, Journal de l’École polytechnique – Mathématiques 3 (2016), p. 231–262. | MR | Numdam

[18] S. D. Cutkosky – “Asymptotic multiplicities of graded families of ideals and linear series”, Advances in Mathematics 264 (2014), p. 55–113. | MR | Zbl

[19] G. Faltings – “Calculus on arithmetic surfaces”, Annals of Mathematics. Second Series 119 (1984), 2, p. 387–424. | MR | Zbl

[20] M. Fradelizi, A. Giannopoulos & M. Meyer – “Some inequalities about mixed volumes”, Israel Journal of Mathematics 135 (2003), p. 157–179. | MR | Zbl

[21] É. Gaudron – “Pentes de fibrés vectoriels adéliques sur un corps globale”, Rendiconti del Seminario Matematico della Università di Padova 119 (2008), p. 21–95. | MR | Zbl | Numdam

[22] M. Gromov – “Convex sets and Kähler manifolds”, in Advances in differential geometry and topology, World Sci. Publ., 1990, p. 1–38. | MR | Zbl

[23] M. A. Hernández Cifre & J. Yepes Nicolás – “Refinements of the Brunn-Minkowski inequality”, Journal of Convex Analysis 21 (2014), 3, p. 727–743.

[24] P. Hriljac – “Heights and Arakelov’s intersection theory”, American Journal of Mathematics 107 (1985), 1, p. 23–38. | MR | Zbl

[25] H. Ikoma – “On the concavity of the arithmetic volumes”, to appear in International Mathematics Research Notices, 2015.

[26] K. Kaveh & A. G. Khovanskii – “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Annals of Mathematics. Second Series 176 (2012), 2, p. 925–978. | MR | Zbl

[27] K. Kaveh & A. Khovanskii – “Algebraic equations and convex bodies”, in Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, 2012, p. 263–282. | MR | Zbl

[28] H. Knothe – “Contributions to the theory of convex bodies”, The Michigan Mathematical Journal 4 (1957), p. 39–52. | MR | Zbl

[29] K. Künnemann – “Some remarks on the arithmetic Hodge index conjecture”, Compositio Mathematica 99 (1995), 2, p. 109–128. | MR | Zbl | Numdam

[30] R. Lazarsfeld & M. Mustaţă – “Convex bodies associated to linear series”, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 42 (2009), 5, p. 783–835. | MR | Zbl | Numdam

[31] H. Minkowski – “Theorie der konvexen Körpern, insbesonder der Begründung ihres Oberflächenbegriffs”, in Gesammelte Abhandlungen, vol. II, Teubner, 1903, p. 131–229.

[32] A. Moriwaki – “Hodge index theorem for arithmetic cycles of codimension one”, Mathematical Research Letters 3 (1996), 2, p. 173–183. | MR | Zbl

[33] A. Moriwaki – “Continuity of volumes on arithmetic varieties”, Journal of algebraic geometry 18 (2009), 3, p. 407–457. | MR | Zbl

[34] A. Moriwaki – “Adelic divisors on arithmetic varieties”, Memoirs of the American Mathematical Society 242 (2016), 1144, p. v+122. | MR

[35] R. Osserman – “The isoperimetric inequality”, Bulletin of the American Mathematical Society 84 (1978), 6, p. 1182–1238. | MR | Zbl

[36] H. Randriambololona – “Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents”, Journal für die Reine und Angewandte Mathematik 590 (2006), p. 67–88.

[37] R. SchneiderConvex bodies: the Brunn-Minkowski theory, expanded éd., Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, 2014.

[38] B. Teissier – “Du théorème de l’index de Hodge aux inégalités isopérimétriques”, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 288 (1979), 4, p. A287–A289. | MR | Zbl

[39] X. Yuan – “Big line bundles over arithmetic varieties”, Inventiones Mathematicae 173 (2007), 3, p. 603–649. | MR | Zbl

[40] X. Yuan , “On volumes of arithmetic line bundles”, Compositio Mathematica 145 (2009), 6, p. 1447–1464. | MR | Zbl

[41] X. Yuan & S.-W. Zhang – “The arithmetic Hodge index theorem for adelic line bundles”, Mathematische Annalen 367 (2017), 3–4, p. 1123–1171. | MR

[42] X. Yuan & T. Zhang – “Effective bounds of linear series on algebraic varieties and arithmetic varieties”, Journal für die reine und angewandte Mathematik 736 (2018), p. 255–284. | MR

Cité par Sources :