[Dynamique de l’hamiltonien dominant]
It is well known that instabilities of nearly integrable Hamiltonian systems occur around resonances. Dynamics near resonances of these systems is well approximated by the associated averaged system, called slow system. Each resonance is defined by a basis (a collection of integer vectors). We introduce a class of resonances whose basis can be divided into two well separated groups and call them dominant. We prove that the associated slow system can be well approximated by a subsystem given by one of the groups, both in the sense of the vector field and weak KAM theory. As a corollary, we obtain perturbation results on normally hyperbolic invariant cylinders, and the Aubry/Mañe sets. This has applications in Arnold diffusion in arbitrary degrees of freedom.
Il est bien connu que les instabilités des systèmes hamiltoniens presque intégrables interviennent au voisinage des résonances. La dynamique de ces systèmes près des résonances est bien approchée par les systèmes moyennés associés, appelés systèmes lents. Chaque résonance est définie par une base (une collection de vecteurs entiers). Nous introduisons une classe de résonances dont la base peut être divisée en deux groupes bien distincts, que nous appelons dominantes. Nous prouvons que le système lent associé peut être bien approché par un sous-système donné par l’un de ces deux groupes, à la fois comme champ de vecteurs et au sens de la théorie KAM faible. Comme corollaire, nous obtenons des résultats perturbatifs sur des cylindres invariants normalement hyperboliques, et sur les ensembles d’Aubry/Mañé. Cela a des applications en diffusion d’Arnold pour un nombre arbitraire de degrés de liberté.
Keywords: Hamiltonian systems, resonant averaging, Mather theory, weak KAM theory, Arnold diffusion.
Mots-clés : Systèmes hamiltoniens, moyenne de résonance, théorie d’Mather, théorie KAM faible, diffusion d’Arnold.
Kaloshin, Vadim 1 ; Zhang, Ke 2
@article{BSMF_2018__146_3_517_0,
author = {Kaloshin, Vadim and Zhang, Ke},
title = {Dynamics of the dominant {Hamiltonian}},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {517--574},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {3},
doi = {10.24033/bsmf.2765},
mrnumber = {3936533},
zbl = {1417.37214},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2765/}
}
TY - JOUR AU - Kaloshin, Vadim AU - Zhang, Ke TI - Dynamics of the dominant Hamiltonian JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 517 EP - 574 VL - 146 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2765/ DO - 10.24033/bsmf.2765 LA - en ID - BSMF_2018__146_3_517_0 ER -
%0 Journal Article %A Kaloshin, Vadim %A Zhang, Ke %T Dynamics of the dominant Hamiltonian %J Bulletin de la Société Mathématique de France %D 2018 %P 517-574 %V 146 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2765/ %R 10.24033/bsmf.2765 %G en %F BSMF_2018__146_3_517_0
Kaloshin, Vadim; Zhang, Ke. Dynamics of the dominant Hamiltonian. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 3, pp. 517-574. doi: 10.24033/bsmf.2765
Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Math. Sciences, 3, Springer, 2006, 518 pages | MR | Zbl
Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, Volume 18 (1963), pp. 91-192 | MR | Zbl
Instabilities in dynamical systems with several degrees of freedom, Sov Math Dokl, Volume 5 (1964), pp. 581-585 | Zbl
Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, Volume 156 (1964), pp. 9-12 | MR
Mathematical problems in classical physics, Trends and perspectives in applied mathematics (Appl. Math. Sci.), Volume 100, Springer, 1994, pp. 1-20 | MR | Zbl | DOI
Young measures, superposition and transport, Indiana Univ. Math. J., Volume 57 (2008), pp. 247-275 | MR | Zbl | DOI
On the Conley decomposition of Mather sets, Rev. Mat. Iberoam., Volume 26 (2010), pp. 115-132 | MR | Zbl | DOI
Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders (preprint arXiv:1112.2773 ) | MR
Introduction to Dynamical systems, Introduction to Dynamical systems, Cambridge Univ. Press, 2002 | MR | Zbl | DOI
Arnold diffusion in nearly integrable systems (preprint arXiv:1503.04153 )
The gradient structure of a flow. I, Ergodic Theory Dynam. Systems, Volume 8* (1988), pp. 11-26 | MR | Zbl | DOI
Weak KAM theorem in Lagrangian dynamics, 10th preliminary version (2008) (book preprint)
Orbits of nearly integrable systems accumulating to KAM tori (3000effacer) (preprint arXiv:1412.7088 )
Adapted metrics for dominated splittings, Ergodic Theory and Dynamical Systems, Volume 27 (2007), pp. 1839-1849 http://journals.cambridge.org/... | MR | Zbl | DOI
Instability of totally elliptic points of symplectic maps in dimension 4, Astérisque, Volume 74 (2004), pp. 79-116 | MR | Zbl | Numdam
Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion (preprint arXiv:1410.1844 ) | MR
A strong form of Arnold diffusion for two and half degrees of freedom (preprint arXiv:1212.1150 ) | MR
Arnold diffusion for three and half degrees of freedom (2014) (preprint http://www2.math.umd.edu/~vkaloshi/papers/announce-three-and-half.pdf )
Generic hyperbolic properties of classical systems on the torus (2012) (preprint)
Generic hyperbolic properties of nearly integrable systems on (2012) (preprint)
Arnold diffusion. I. Announcement of results, Sovrem. Mat. Fundam. Napravl., Volume 2 (2003), pp. 116-130 | Zbl
Arnold diffusion. II (2008) (preprint)
Shortest curves associated to a degenerate Jacobi metric on , Progress in variational methods (Nankai Ser. Pure Appl. Math. Theoret. Phys.), Volume 7, World Sci. Publ., Hackensack, NJ, 2011, pp. 126-168 | MR | Zbl
Variational construction of connecting orbits, Ann. Inst. Fourier, Volume 43 (1993), pp. 1349-1386 | Numdam | MR | Zbl | DOI
Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.), Volume 28 (1997), pp. 141-153 | MR | Zbl | DOI
The stable manifold theorem via an isolating block, Symposium on Ordinary Differential Equations (Univ. Minnesota, Minneapolis, Minn., 1972; dedicated to Hugh L. Turrittin) (Lecture Notes in Math.), Volume 312, Springer, 1973, pp. 135-144 | MR | Zbl
Global Stability of Dynamical Systems, Lecture Notes in Math., 583, Springer, 1987, 150 pages | MR | Zbl | DOI
Lectures on the geometry of numbers, Springer, 1989, 160 pages | MR | Zbl | DOI
Lecture notes on Mather’s theory for Lagrangian systems (preprint arXiv:1011.0590 ) | MR
Cité par Sources :






