[Substitution topologique pour la pavage fractal apériodique de Rauzy]
We consider two families of planar self-similar tilings of different nature: the tilings consisting of translated copies of the fractal sets defined by an iterated function system, and the tilings obtained as a geometrical realization of a topological substitution (an object of purely combinatorial nature, defined in [6]). We establish a link between the two families in a specific case, by defining an explicit topological substitution and by proving that it generates the same tilings as those associated with the Tribonacci Rauzy fractal.
On considère deux familles de pavages auto-similaires de nature différente : ceux obtenus par translation de copies d’un ensemble fractal défini par un système de fonctions itérées, et ceux obtenus comme la réalisation géométrique d’une substitution topologique (un objet purement combinatoire, défini dans [6]). On établit un lien entre les deux familles dans un cas particulier, en définissant une substitution topologique explicitement puis en démontrant qu’elle engendre les mêmes pavages que ceux associés au fractal Tribonacci de Rauzy.
Révisé le :
Accepté le :
Publié le :
Keywords: Rauzy fractal, tiling, tribonacci fractal, topological substitution, combinatorial substitution.
Mots-clés : Rauzy fractal, tiling, fractal tribonacci, substitution topologique, substitution combinatoire
Bédaride, Nicolas 1 ; Hilion, Arnaud 1 ; Jolivet, Timo 2
@article{BSMF_2018__146_3_575_0,
author = {B\'edaride, Nicolas and Hilion, Arnaud and Jolivet, Timo},
title = {Topological substitution for the aperiodic {Rauzy} fractal tiling},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {575--612},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {3},
doi = {10.24033/bsmf.2762},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2762/}
}
TY - JOUR AU - Bédaride, Nicolas AU - Hilion, Arnaud AU - Jolivet, Timo TI - Topological substitution for the aperiodic Rauzy fractal tiling JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 575 EP - 612 VL - 146 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2762/ DO - 10.24033/bsmf.2762 LA - en ID - BSMF_2018__146_3_575_0 ER -
%0 Journal Article %A Bédaride, Nicolas %A Hilion, Arnaud %A Jolivet, Timo %T Topological substitution for the aperiodic Rauzy fractal tiling %J Bulletin de la Société Mathématique de France %D 2018 %P 575-612 %V 146 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2762/ %R 10.24033/bsmf.2762 %G en %F BSMF_2018__146_3_575_0
Bédaride, Nicolas; Hilion, Arnaud; Jolivet, Timo. Topological substitution for the aperiodic Rauzy fractal tiling. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 3, pp. 575-612. doi: 10.24033/bsmf.2762
On the Pisot substitution conjecture, Mathematics of aperiodic order (Progr. Math.), Volume 309, Birkhäuser/Springer, 2015, pp. 33-72 | DOI | MR
Discrete planes, -actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier, Volume 52 (2002), pp. 305-349 | Numdam | MR
Two-dimensional iterated morphisms and discrete planes, Theoret. Comput. Sci., Volume 319 (2004), pp. 145-176 | DOI | MR
Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 181-207 http://projecteuclid.org/euclid.bbms/1102714169 | MR
A combinatorial approach to products of Pisot substitutions, Ergodic Theory Dynam. Systems, Volume 36 (2016), pp. 1757-1794 | DOI | MR
Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, 149, Cambridge Univ. Press, 2013, 531 pages | DOI | MR
Geometric realizations of two-dimensional substitutive tilings, Q. J. Math., Volume 64 (2013), pp. 955-979 | DOI | MR
Combinatorics, automata and number theory (Berthé, Valérie; Rigo, Michel, eds.), Encyclopedia of Mathematics and its Applications, 135, Cambridge Univ. Press, 2010, 615 pages | DOI | MR
A “regular” pentagonal tiling of the plane, Conform. Geom. Dyn., Volume 1 (1997), pp. 58-68 | DOI | MR | Zbl
Finite subdivision rules, Conform. Geom. Dyn., Volume 5 (2001), pp. 153-196 | DOI | MR
Constructing subdivision rules from rational maps, Conform. Geom. Dyn., Volume 11 (2007), pp. 128-136 | DOI | MR
Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 5121-5144 | DOI | MR
Recognizing constant curvature discrete groups in dimension , Trans. Amer. Math. Soc., Volume 350 (1998), pp. 809-849 | DOI | MR
Local rule substitutions and stepped surfaces, Theoret. Comput. Sci., Volume 380 (2007), pp. 317-329 | DOI | MR
Combinatorial substitutions and sofic tilings, Journées Automates Cellulaires (TUCS Lecture Notes) (2010), pp. 100-110
Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer, 2002, 402 pages | DOI | MR
Detecting combinatorial hierarchy in tilings using derived Voronoï tesselations, Discrete Comput. Geom., Volume 29 (2003), pp. 459-476 | DOI | MR
A primer of substitution tilings of the Euclidean plane, Expo. Math., Volume 26 (2008), pp. 295-326 | DOI | MR
Tilings and patterns, W. H. Freeman and Company, 1987, 700 pages | MR
Algebraic topology, Cambridge Univ. Press, 2002, 544 pages | MR
Differential topology, Graduate Texts in Math., 33, Springer, 1994, 222 pages | MR
Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993), pp. 441-472 | DOI | MR
Undecidable properties of self-affine sets and multi-tape automata, Mathematical foundations of computer science 2014. Part I (Lecture Notes in Comput. Sci.), Volume 8634, Springer, 2014, pp. 352-364 | DOI | MR
An introduction to symbolic dynamics and coding, Cambridge Univ. Press, 1995, 495 pages | DOI | MR
Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003), pp. 175-209 | DOI | MR
Frequency of patterns in certain graphs and in Penrose tilings, J. Physique, Volume 47 (1986), p. C3-41–C3-62 | MR
Construction of the discrete hull for the combinatorics of a regular pentagonal tiling of the plane, Math. Scand., Volume 119 (2016), pp. 39-59 | DOI | MR
Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | Numdam | MR
Symbolic dynamics and tilings of , Symbolic dynamics and its applications (Proc. Sympos. Appl. Math.), Volume 60, Amer. Math. Soc., 2004, pp. 81-119 | DOI | MR | Zbl
Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 695-738 | DOI | MR
Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.), Volume 118 (2009), p. 140 | MR
Groups, tilings, and finite state automata (AMS Colloquium lecture notes) (1989) (unpublished manuscript)
Cité par Sources :






