[Autour du comportement des solutions régulières de Navier-Stokes à proximité du blow up]
In this paper, we present some results about blow up of regular solutions to the homogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space , where Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly, we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile theory as established by P. Gérard [11].
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2760
Poulon, Eugénie 1
@article{BSMF_2018__146_2_355_0,
author = {Poulon, Eug\'enie},
title = {About the behavior of regular {Navier-Stokes} solutions near the blow up},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {355--390},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {2},
doi = {10.24033/bsmf.2760},
mrnumber = {3933879},
zbl = {1405.35143},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2760/}
}
TY - JOUR AU - Poulon, Eugénie TI - About the behavior of regular Navier-Stokes solutions near the blow up JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 355 EP - 390 VL - 146 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2760/ DO - 10.24033/bsmf.2760 LA - en ID - BSMF_2018__146_2_355_0 ER -
%0 Journal Article %A Poulon, Eugénie %T About the behavior of regular Navier-Stokes solutions near the blow up %J Bulletin de la Société Mathématique de France %D 2018 %P 355-390 %V 146 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2760/ %R 10.24033/bsmf.2760 %G en %F BSMF_2018__146_2_355_0
Poulon, Eugénie. About the behavior of regular Navier-Stokes solutions near the blow up. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 355-390. doi: 10.24033/bsmf.2760
Convergence of solutions of -systems or how to blow bubbles, Arch. Rational Mech. Anal., Volume 89 (1985), pp. 21-56 | MR | Zbl | DOI
Fourier analysis and nonlinear partial differential equations, Grundl. math. Wiss., 343, Springer, 2011, 523 pages | MR | Zbl | DOI
A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math., Volume 3 (2011), pp. 387-411 | MR | Zbl | DOI
High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/... | MR | Zbl | DOI
Lack of compactness in the 2D critical Sobolev embedding, the general case, J. Math. Pures Appl., Volume 101 (2014), pp. 415-457 | MR | Zbl | DOI
Refinements of Strichartz’ inequality and applications to D-NLS with critical nonlinearity, Int. Math. Res. Not., Volume 1998 (1998), pp. 253-283 | MR | Zbl | DOI
On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 | MR | Zbl | DOI
Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, Volume 129 (2001), pp. 285-316 | MR | Zbl | Numdam | DOI
Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var., Volume 3 (1998), pp. 213-233 | MR | Zbl | Numdam | DOI
Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 1387-1424 | Numdam | MR | Zbl | DOI
A profile decomposition approach to the Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 | MR | Zbl | DOI
Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., Volume 161 (1999), pp. 384-396 | MR | Zbl | DOI
On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001), pp. 353-392 | MR | Zbl | DOI
An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, Volume 28 (2011), pp. 159 -187 http://www.sciencedirect.com/... | MR | Zbl | Numdam | DOI
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., Volume 166 (2006), pp. 645-675 | MR | Zbl | DOI
Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008), pp. 147-212 | MR | Zbl | DOI
Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math. J., Volume 59 (2010), pp. 1801-1830 | MR | Zbl | DOI
Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Math., 431, Chapman & Hall/CRC, 2002, 395 pages | MR | Zbl | DOI
Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934), pp. 193-248 | MR | JFM | DOI
The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, Volume 1 (1985), pp. 145-201 | MR | Zbl | DOI
The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana, Volume 1 (1985), pp. 45-121 | MR | Zbl | DOI
Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not., Volume 1998 (1998), pp. 399-425 | MR | Zbl | DOI
Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., Volume 260 (2011), pp. 879-891 | MR | Zbl | DOI
Cité par Sources :






