About the behavior of regular Navier-Stokes solutions near the blow up
[Autour du comportement des solutions régulières de Navier-Stokes à proximité du blow up]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 355-390

In this paper, we present some results about blow up of regular solutions to the homogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space H˙s(3), where 12<s<32· Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly, we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile theory as established by P. Gérard [11].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2760
Keywords: Navier-Stokes equations, blow up, profile decomposition.

Poulon, Eugénie 1

1 Laboratoire Jacques-Louis Lions - UMR 7598, Université Pierre et Marie Curie, Boîte courrier 187, 4 place Jussieu, 75252 Paris Cedex 05, France
@article{BSMF_2018__146_2_355_0,
     author = {Poulon, Eug\'enie},
     title = {About the behavior of regular {Navier-Stokes} solutions near the blow up},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {355--390},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {2},
     doi = {10.24033/bsmf.2760},
     mrnumber = {3933879},
     zbl = {1405.35143},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2760/}
}
TY  - JOUR
AU  - Poulon, Eugénie
TI  - About the behavior of regular Navier-Stokes solutions near the blow up
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 355
EP  - 390
VL  - 146
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2760/
DO  - 10.24033/bsmf.2760
LA  - en
ID  - BSMF_2018__146_2_355_0
ER  - 
%0 Journal Article
%A Poulon, Eugénie
%T About the behavior of regular Navier-Stokes solutions near the blow up
%J Bulletin de la Société Mathématique de France
%D 2018
%P 355-390
%V 146
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2760/
%R 10.24033/bsmf.2760
%G en
%F BSMF_2018__146_2_355_0
Poulon, Eugénie. About the behavior of regular Navier-Stokes solutions near the blow up. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 355-390. doi: 10.24033/bsmf.2760

Brezis, H.; Coron, J.-M. Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., Volume 89 (1985), pp. 21-56 | MR | Zbl | DOI

Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundl. math. Wiss., 343, Springer, 2011, 523 pages | MR | Zbl | DOI

Bahouri, Hajer; Cohen, Albert; Koch, Gabriel A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math., Volume 3 (2011), pp. 387-411 | MR | Zbl | DOI

Bahouri, Hajer; Gérard, Patrick High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/... | MR | Zbl | DOI

Bahouri, Hajer; Majdoub, Mohamed; Masmoudi, Nader Lack of compactness in the 2D critical Sobolev embedding, the general case, J. Math. Pures Appl., Volume 101 (2014), pp. 415-457 | MR | Zbl | DOI

Bourgain, J. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., Volume 1998 (1998), pp. 253-283 | MR | Zbl | DOI

Fujita, Hiroshi; Kato, Tosio On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 | MR | Zbl | DOI

Gallagher, Isabelle Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, Volume 129 (2001), pp. 285-316 | MR | Zbl | Numdam | DOI

Gérard, Patrick Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var., Volume 3 (1998), pp. 213-233 | MR | Zbl | Numdam | DOI

Gallagher, Isabelle; Iftimie, D.; Planchon, Fabrice Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), Volume 53 (2003), pp. 1387-1424 | Numdam | MR | Zbl | DOI

Gallagher, Isabelle; Koch, Gabriel S.; Planchon, Fabrice A profile decomposition approach to the Lt(Lx3) Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 | MR | Zbl | DOI

Jaffard, Stéphane Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., Volume 161 (1999), pp. 384-396 | MR | Zbl | DOI

Keraani, Sahbi On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001), pp. 353-392 | MR | Zbl | DOI

Kenig, Carlos E.; Koch, Gabriel S. An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, Volume 28 (2011), pp. 159 -187 http://www.sciencedirect.com/... | MR | Zbl | Numdam | DOI

Kenig, Carlos E.; Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., Volume 166 (2006), pp. 645-675 | MR | Zbl | DOI

Kenig, Carlos E.; Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008), pp. 147-212 | MR | Zbl | DOI

Koch, Gabriel S. Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math. J., Volume 59 (2010), pp. 1801-1830 | MR | Zbl | DOI

Lemarié-Rieusset, P. G. Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Math., 431, Chapman & Hall/CRC, 2002, 395 pages | MR | Zbl | DOI

Leray, Jean Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934), pp. 193-248 | MR | JFM | DOI

Lions, P.-L. The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, Volume 1 (1985), pp. 145-201 | MR | Zbl | DOI

Lions, P.-L. The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana, Volume 1 (1985), pp. 45-121 | MR | Zbl | DOI

Merle, Frank; Vega, L. Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not., Volume 1998 (1998), pp. 399-425 | MR | Zbl | DOI

Rusin, W.; Šverák, V. Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., Volume 260 (2011), pp. 879-891 | MR | Zbl | DOI

Cité par Sources :