Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds
[Domaines convexes compacts avec des métriques de bord prescrites dans les variétés quasi-fuchsiennes]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 309-353

We show the existence of a convex compact domain in a quasi-Fuchsian manifold such that the induced metric on its boundary coincides with a prescribed surface metric of curvature K-1 in the sense of A. D. Alexandrov.

This result extends the existence part of the classical result by Alexandrov and Pogorelov on the realization of a convex domain with a prescribed boundary metric in 3 in the case where 3 is replaced by a quasi-Fuchsian manifold and therefore the topology of a convex domain is not trivial.

Nous montrons l’existence d’un tel domaine compact convexe dans une variété quasi-fuchsienne que la métrique induite sur son bord coïncide avec une métrique prescrite de courbure K-1 au sens de A. D. Alexandrov.

Ce résultat étend la partie d’existence d’un résultat classique par Alexandrov et Pogorelov sur la réalisation d’un domaine convexe avec une metrique de bord prescrite dans 3 dans le cas où 3 est remplacé par une variété quasi-fuchsienne et donc la topologie d’un domaine convexe n’est pas triviale.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2759
Classification : 53C45, 20H10, 53C42, 30F40, 57M10, 57M40
Keywords: quasi-Fuchsian manifold, convex compact domain, Alexandrov space, induced metric

Slutskiy, Dmitriy 1

1 Université de Cergy-Pontoise, Laboratoire AGM, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
@article{BSMF_2018__146_2_309_0,
     author = {Slutskiy, Dmitriy},
     title = {Compact domains with prescribed convex boundary metrics in {quasi-Fuchsian} manifolds},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {309--353},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {2},
     doi = {10.24033/bsmf.2759},
     mrnumber = {3933878},
     zbl = {1415.53053},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2759/}
}
TY  - JOUR
AU  - Slutskiy, Dmitriy
TI  - Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 309
EP  - 353
VL  - 146
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2759/
DO  - 10.24033/bsmf.2759
LA  - en
ID  - BSMF_2018__146_2_309_0
ER  - 
%0 Journal Article
%A Slutskiy, Dmitriy
%T Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds
%J Bulletin de la Société Mathématique de France
%D 2018
%P 309-353
%V 146
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2759/
%R 10.24033/bsmf.2759
%G en
%F BSMF_2018__146_2_309_0
Slutskiy, Dmitriy. Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 309-353. doi: 10.24033/bsmf.2759

Alexandrov, A. D. Intrinsic Geometry of Convex Surfaces, Selected Works: Part II, Chapman and Hall/CRC, 2006, 539 pages | MR

Alexandroff, A.D. Полные выпуклые поверхности в пространстве Лобачевского (= Complete convex surfaces in Lobachevskian space), Изв. АН СССР. Сер. матем., Volume 9 (1945), pp. 113-120 | MR | Zbl

Alekseevskij, D. V.; Vinberg, È. B.; Solodovnikov, A. S. Geometry of spaces of constant curvature, Geometry, II (Encyclopaedia Math. Sci.), Volume 29, Springer, 1993, pp. 1-138 | MR | Zbl

Ballmann, Werner; Gromov, Mikhael; Schroeder, Viktor Manifolds of nonpositive curvature, Progress in Math., 61, Birkhäuser, 1985, 263 pages | MR | Zbl | DOI

Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Universitext, Springer, 2003, 330 pages | DOI | MR

Brock, Jeffrey F. Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. math., Volume 143 (2001), pp. 523-570 | MR | Zbl | DOI

Canary, R. D.; Epstein, D. B. A.; Green, P. L. Notes on notes of Thurston [MR0903850], Fundamentals of hyperbolic geometry: selected expositions (London Math. Soc. Lecture Note Ser.), Volume 328, Cambridge Univ. Press, 2006, pp. 1-115 | MR

Dieudonné, J. Foundations of modern analysis, Pure and Applied Mathematics, 10, Academic Press, 1960, 361 pages | MR | Zbl

Fillastre, François Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces, Ann. Inst. Fourier, Volume 57 (2007), pp. 163-195 | Zbl | MR | Numdam | DOI

Fillastre, François; Izmestiev, Ivan; Veronelli, Giona Quasi-Fuchsian manifolds with particles, Manuscripta Math., Volume 150 (2016), pp. 475-492 | MR | Zbl

Ghomi, Mohammad The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., Volume 130 (2002), pp. 2255-2259 | MR | Zbl | DOI

Gromov, Mikhael Partial differential relations, Ergebn. Math. und ihrer Grenzg., 9, Springer, 1986 | MR | Zbl | DOI

Labourie, François Métriques prescrites sur le bord des variétés hyperboliques de dimension 3, J. Differ. Geom., Volume 35 (1992), pp. 609-626 | MR | Zbl

Matsuzaki, Katsuhiko Indecomposable continua and the limit sets of Kleinian groups, Proceedings of the 3rd Ahlfors-Bers colloquium, Storrs, CT, USA, October 18–21, 2001, Amer. Math. Soc. (2004), pp. 321-332 | MR | Zbl

Moroianu, Sergiu; Schlenker, Jean-Marc Quasi-Fuchsian manifolds with particles, J. Differential Geom., Volume 83 (2009), pp. 75-129 http://projecteuclid.org/... | MR | Zbl

Matsuzaki, Katsuhiko; Taniguchi, Masahiko Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1998, 253 pages (Oxford Science Publications) | MR | Zbl | DOI

Otal, Jean-Pierre Les géodésiques fermées d’une variété hyperbolique en tant que nœuds, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) (London Math. Soc. Lecture Note Ser.), Volume 299, Cambridge Univ. Press, 2003, pp. 95-104 | MR | Zbl | DOI

Otal, Jean-Pierre Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque, Volume 235 (1996) | MR | Zbl | Numdam

Pogorelov, A.V. Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, 35, Amer. Math. Soc., 1973 | MR | Zbl | DOI

Richard, Thomas Flot de Ricci sans borne supérieure sur la courbure et géométrie de certains espaces métriques, Ph. D. Thesis , Institut Fourier, Grenoble (2012)

Schlenker, Jean-Marc Hyperbolic manifolds with convex boundary, Inventiones mathematicae, Volume 163 (2006), pp. 109-169 | MR | Zbl | DOI

Shiohama, Katsuhiro An introduction to the geometry of Alexandrov spaces, Lecture Notes Series, 8, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993, 78 pages | MR | Zbl

Slutskiy, Dmitriy Métriques polyèdrales sur les bords de variétés hyperboliques convexes et flexibilité des polyèdres hyperboliques, Ph. D. Thesis , Université Paul Sabatier, Toulouse (2013)

Slutskiy, Dmitriy Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds (2014) (preprint arXiv:1405.1650 ) | MR

Slutskiy, Dmitriy Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 831-834 | MR | Zbl | DOI

Cité par Sources :