[Existence globale et comportement asymptotique de petites solutions pour des équation de Klein-Gordon critiques 1D]
Let be a solution to a quasi-linear Klein-Gordon equation in one-space dimension, , where is a homogeneous polynomial of degree three, and with smooth Cauchy data of size . It is known that, under a suitable condition on the nonlinearity, the solution is global-in-time for compactly supported Cauchy data. We prove in this paper that the result holds even when data are not compactly supported but just decaying as at infinity, combining the method of Klainerman vector fields with a semiclassical normal forms method introduced by Delort. Moreover, we get a one term asymptotic expansion for when .
Soit une solution d’une équation de Klein-Gordon quasi-linéaire en dim. 1 d’espace, , où est un polynôme homogène de degré trois, avec données initiales régulières de taille . Il est connu que, sous certaines conditions sur la non-linéarité, la solution est globale en temps pour des données initiales à support compact. Nous montrons que ce résultat est aussi vrai quand les données ne sont pas à support compact mais seulement décroissantes à l’infini comme , en combinant la méthode des champs de vecteurs de Klainerman avec une méthode de formes normales semi-classiques introduite par Delort. De plus, nous obtenons un développement asymptotique à un terme pour lorsque , prouvant ainsi un résultat de scattering modifié.
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2755
Mots-clés : Solution globale pour des équations de Klein-Gordon quasi-linéaires, champs de vecteurs de Klainerman, analyse semiclassique
Stingo, Annalaura 1
@article{BSMF_2018__146_1_155_0,
author = {Stingo, Annalaura},
title = {Global existence and asymptotics for quasi-linear one-dimensional {Klein-Gordon} equations with mildly decaying {Cauchy} data},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {155--213},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {1},
doi = {10.24033/bsmf.2755},
mrnumber = {3864873},
zbl = {1409.35146},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2755/}
}
TY - JOUR AU - Stingo, Annalaura TI - Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 155 EP - 213 VL - 146 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2755/ DO - 10.24033/bsmf.2755 LA - en ID - BSMF_2018__146_1_155_0 ER -
%0 Journal Article %A Stingo, Annalaura %T Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data %J Bulletin de la Société Mathématique de France %D 2018 %P 155-213 %V 146 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2755/ %R 10.24033/bsmf.2755 %G en %F BSMF_2018__146_1_155_0
Stingo, Annalaura. Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 155-213. doi: 10.24033/bsmf.2755
Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1149-1238 | DOI | MR | Zbl | Numdam
Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282 | MR | Zbl | DOI
Long range scattering for the cubic Dirac equation on (preprint arXiv:1606.08397 ) | MR
Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 1-61 | MR | Zbl | Numdam | DOI
Erratum: “Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1” [Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61], Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 335-345 | MR | Zbl | Numdam | DOI
Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 1451-1528 | MR | Zbl | Numdam | DOI
Minoration du temps d’existence pour l’équation de Klein-Gordon non-linéaire en dimension 1 d’espace, Ann. Inst. H. Poincaré Anal. non linéaire, Volume 16 (1999), pp. 563-591 | MR | Zbl | Numdam | DOI
Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., Volume 211 (2004), pp. 288-323 | MR | Zbl | DOI
Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge Univ. Press, Cambridge, 1999, 227 pages | MR | Zbl | DOI
Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2463-2506 | MR | Zbl | Numdam | DOI
Absence of Shocks for One Dimensional Euler–Poisson System, Archive for Rational Mechanics and Analysis (2016), pp. 1-65 | MR | Zbl | DOI
Global solution to the two-dimensional Klein-Gordon equation, Comm. Partial Differential Equations, Volume 16 (1991), pp. 941-995 | MR | Zbl | DOI
Asymptotic behaviour of the one-dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (preprint of the ICTP Trieste, IC/96/117)
Quadratic nonlinear Klein-Gordon equation in one dimension, J. Math. Phys., Volume 53 (2012), p. 103711, 36 | MR | Zbl | DOI
The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential operators (Oberwolfach, 1986) (Lecture Notes in Math.), Volume 1256, Springer, Berlin, 1987, pp. 214-280 | MR | Zbl | DOI
Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), 26, Springer, Berlin, 1997, 289 pages | MR | Zbl
Global solutions of quasilinear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 2355-2431 | MR | Zbl | DOI
Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 | DOI | MR | Zbl
A note on a system of cubic nonlinear Klein-Gordon equations in one space dimension, Differ. Equ. Dyn. Syst., Volume 25 (2017), pp. 431-451 | DOI | MR | Zbl
Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., Volume 38 (1985), pp. 631-641 | MR | Zbl | DOI
The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) (Lectures in Appl. Math.), Volume 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293-326 | MR | Zbl
A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, Comm. Pure Appl. Math., Volume 65 (2012), pp. 1285-1302 | MR | Zbl | DOI
The unit condition and global existence for a class of nonlinear Klein-Gordon equations, J. Differential Equations, Volume 100 (1992), pp. 257-268 | MR | Zbl | DOI
Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differential Equations, Volume 251 (2011), pp. 2549-2567 | MR | Zbl | DOI
Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., Volume 121 (1999), pp. 629-669 http://muse.jhu.edu/... | MR | Zbl | DOI
The hyperboloidal foliation method, Series in Applied and Computational Mathematics, 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014, 149 pages | MR | Zbl
A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 77-89 | MR | Zbl | DOI
Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Volume 10 (1997), pp. 499-520 | MR | Zbl
Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., Volume 40 (1997), pp. 313-333 http://www.math.kobe-u.ac.jp/~fe/xml/mr1480281.xml | MR | Zbl
Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., Volume 222 (1996), pp. 341-362 | MR | Zbl | DOI
Remarks on the Klein-Gordon equation with quadratic nonlinearity in two space dimensions, Volume 10 (1997), pp. 383-392 | MR | Zbl
Global existence without decay for quadratic Klein-Gordon equations (preprint arXiv:1209.1518 )
Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | MR | Zbl | DOI
On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, Volume 192 (2003), pp. 308-325 | MR | Zbl | DOI
Blow-up for the one-dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (preprint)
Semiclassical analysis, Graduate Studies in Math., 138, Amer. Math. Soc., Providence, RI, 2012, 431 pages | MR | Zbl | DOI
Cité par Sources :






