Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data
[Existence globale et comportement asymptotique de petites solutions pour des équation de Klein-Gordon critiques 1D]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 155-213

Let u be a solution to a quasi-linear Klein-Gordon equation in one-space dimension, u+u=P(u,tu,xu;txu,x2u), where P is a homogeneous polynomial of degree three, and with smooth Cauchy data of size ε0. It is known that, under a suitable condition on the nonlinearity, the solution is global-in-time for compactly supported Cauchy data. We prove in this paper that the result holds even when data are not compactly supported but just decaying as x-1 at infinity, combining the method of Klainerman vector fields with a semiclassical normal forms method introduced by Delort. Moreover, we get a one term asymptotic expansion for u when t+.

Soit u une solution d’une équation de Klein-Gordon quasi-linéaire en dim. 1 d’espace, u+u=P(u,tu,xu;txu,x2u), où P est un polynôme homogène de degré trois, avec données initiales régulières de taille ε0. Il est connu que, sous certaines conditions sur la non-linéarité, la solution est globale en temps pour des données initiales à support compact. Nous montrons que ce résultat est aussi vrai quand les données ne sont pas à support compact mais seulement décroissantes à l’infini comme x-1, en combinant la méthode des champs de vecteurs de Klainerman avec une méthode de formes normales semi-classiques introduite par Delort. De plus, nous obtenons un développement asymptotique à un terme pour u lorsque t+, prouvant ainsi un résultat de scattering modifié.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2755
Keywords: Global solution of quasi-linear Klein-Gordon equations, Klainerman vector fields, Semiclassical Analysis.
Mots-clés : Solution globale pour des équations de Klein-Gordon quasi-linéaires, champs de vecteurs de Klainerman, analyse semiclassique

Stingo, Annalaura 1

1 Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), 99, Avenue J.-B. Clément, F-93430 Villetaneuse
@article{BSMF_2018__146_1_155_0,
     author = {Stingo, Annalaura},
     title = {Global existence and asymptotics for quasi-linear one-dimensional {Klein-Gordon} equations with mildly decaying {Cauchy} data},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {155--213},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {1},
     doi = {10.24033/bsmf.2755},
     mrnumber = {3864873},
     zbl = {1409.35146},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2755/}
}
TY  - JOUR
AU  - Stingo, Annalaura
TI  - Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 155
EP  - 213
VL  - 146
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2755/
DO  - 10.24033/bsmf.2755
LA  - en
ID  - BSMF_2018__146_1_155_0
ER  - 
%0 Journal Article
%A Stingo, Annalaura
%T Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data
%J Bulletin de la Société Mathématique de France
%D 2018
%P 155-213
%V 146
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2755/
%R 10.24033/bsmf.2755
%G en
%F BSMF_2018__146_1_155_0
Stingo, Annalaura. Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 155-213. doi: 10.24033/bsmf.2755

Alazard, Thomas; Delort, Jean-Marc Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1149-1238 | DOI | MR | Zbl | Numdam

Christodoulou, Demetrios Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282 | MR | Zbl | DOI

Candy, T.; Lindblad, Hans Long range scattering for the cubic Dirac equation on 1 + 1 (preprint arXiv:1606.08397 ) | MR

Delort, Jean-Marc Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 1-61 | MR | Zbl | Numdam | DOI

Delort, Jean-Marc Erratum: “Global existence and asymptotic behavior for the quasilinear Klein-Gordon equation with small data in dimension 1” [Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1–61], Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 335-345 | MR | Zbl | Numdam | DOI

Delort, Jean-Marc Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 1451-1528 | MR | Zbl | Numdam | DOI

Delort, Jean-Marc Minoration du temps d’existence pour l’équation de Klein-Gordon non-linéaire en dimension 1 d’espace, Ann. Inst. H. Poincaré Anal. non linéaire, Volume 16 (1999), pp. 563-591 | MR | Zbl | Numdam | DOI

Delort, Jean-Marc; Fang, Daoyuan; Xue, Ruying Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., Volume 211 (2004), pp. 288-323 | MR | Zbl | DOI

Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge Univ. Press, Cambridge, 1999, 227 pages | MR | Zbl | DOI

Germain, Pierre Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2463-2506 | MR | Zbl | Numdam | DOI

Guo, Yan; Han, Lijia; Zhang, Jingjun Absence of Shocks for One Dimensional Euler–Poisson System, Archive for Rational Mechanics and Analysis (2016), pp. 1-65 | MR | Zbl | DOI

Georgiev, Vladimir; Popivanov, P. Global solution to the two-dimensional Klein-Gordon equation, Comm. Partial Differential Equations, Volume 16 (1991), pp. 941-995 | MR | Zbl | DOI

Georgiev, Vladimir; Yordanov, B. Asymptotic behaviour of the one-dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (preprint of the ICTP Trieste, IC/96/117)

Hayashi, Nakao; Naumkin, Pavel I. Quadratic nonlinear Klein-Gordon equation in one dimension, J. Math. Phys., Volume 53 (2012), p. 103711, 36 | MR | Zbl | DOI

Hörmander, Lars The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential operators (Oberwolfach, 1986) (Lecture Notes in Math.), Volume 1256, Springer, Berlin, 1987, pp. 214-280 | MR | Zbl | DOI

Hörmander, Lars Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), 26, Springer, Berlin, 1997, 289 pages | MR | Zbl

Ionescu, Alexandru D.; Pausader, Benoit Global solutions of quasilinear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 2355-2431 | MR | Zbl | DOI

Ifrim, Mihaela; Tataru, Daniel Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 | DOI | MR | Zbl

Kim, Donghyun A note on a system of cubic nonlinear Klein-Gordon equations in one space dimension, Differ. Equ. Dyn. Syst., Volume 25 (2017), pp. 431-451 | DOI | MR | Zbl

Klainerman, Sergiu Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., Volume 38 (1985), pp. 631-641 | MR | Zbl | DOI

Klainerman, Sergiu The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) (Lectures in Appl. Math.), Volume 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293-326 | MR | Zbl

Katayama, Soichiro; Ozawa, Tohru; Sunagawa, Hideaki A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, Comm. Pure Appl. Math., Volume 65 (2012), pp. 1285-1302 | MR | Zbl | DOI

Kosecki, Roman The unit condition and global existence for a class of nonlinear Klein-Gordon equations, J. Differential Equations, Volume 100 (1992), pp. 257-268 | MR | Zbl | DOI

Kawahara, Yuichiro; Sunagawa, Hideaki Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differential Equations, Volume 251 (2011), pp. 2549-2567 | MR | Zbl | DOI

Keel, Markus; Tao, Terence Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math., Volume 121 (1999), pp. 629-669 http://muse.jhu.edu/... | MR | Zbl | DOI

LeFloch, Philippe G.; Ma, Yue The hyperboloidal foliation method, Series in Applied and Computational Mathematics, 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014, 149 pages | MR | Zbl

Lindblad, Hans; Soffer, Avy A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 77-89 | MR | Zbl | DOI

Moriyama, Kazunori Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, Volume 10 (1997), pp. 499-520 | MR | Zbl

Moriyama, Kazunori; Tonegawa, Satoshi; Tsutsumi, Yoshio Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., Volume 40 (1997), pp. 313-333 http://www.math.kobe-u.ac.jp/~fe/xml/mr1480281.xml | MR | Zbl

Ozawa, Tohru; Tsutaya, Kimitoshi; Tsutsumi, Yoshio Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., Volume 222 (1996), pp. 341-362 | MR | Zbl | DOI

Ozawa, Tohru; Tsutaya, Kimitoshi; Tsutsumi, Yoshio Remarks on the Klein-Gordon equation with quadratic nonlinearity in two space dimensions, Volume 10 (1997), pp. 383-392 | MR | Zbl

Schottdorff, T. Global existence without decay for quadratic Klein-Gordon equations (preprint arXiv:1209.1518 )

Shatah, Jalal Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | MR | Zbl | DOI

Sunagawa, Hideaki On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, Volume 192 (2003), pp. 308-325 | MR | Zbl | DOI

Yordanov, B. Blow-up for the one-dimensional Klein-Gordon equation with a cubic nonlinearity (1996) (preprint)

Zworski, Maciej Semiclassical analysis, Graduate Studies in Math., 138, Amer. Math. Soc., Providence, RI, 2012, 431 pages | MR | Zbl | DOI

Cité par Sources :