Congruences of modular forms and the Iwasawa λ-invariants
[Congruences de formes modulaires et λ-invariants d’Iwasawa]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 1-79

In this paper, we show how congruences between cusp forms and Eisenstein series of weight k2 give rise to corresponding congruences between the algebraic parts of the critical values of the associated L-functions. This is a generalization of results of Mazur, Stevens, and Vatsal in the case where k=2. As an application, by proving congruences between the p-adic L-function of a certain cusp form and the product of two Kubota-Leopoldt p-adic L-functions, we prove the Iwasawa main conjecture (up to p-power) for cusp forms at ordinary primes p when the associated residual Galois representations are reducible. This is a generalization of Greenberg and Vatsal in the case where k=2.

Dans cet article, nous montrons comment les congruences entre formes paraboliques et séries d’Eisenstein de poids k2 donnent lieu à des congruences entre les parties algébriques des valeurs critiques des fonctions L associées. C’est une généralisation des travaux de Mazur, Stevens et Vatsal dans le cas où k=2. Comme application, en prouvant des congruences entre la fonction p-adique L d’une certaine forme parabolique et le produit de deux fonctions de Kubota-Leopoldt p-adiques L, nous prouvons la conjecture principale d’Iwasawa (à puissance p près) pour les formes paraboliques à nombres premiers ordinaires p lorsque les représentations de Galois résiduelles associées sont réductibles. C’est une généralisation des travaux de Greenberg et Vatsal dans le cas où k=2.

DOI : 10.24033/bsmf.2752
Classification : 11F33, 11F67, 11F75, 11R23, 14F30
Keywords: Congruences of modular forms, special values of $L$-functions, Iwasawa theory, Eisenstein series, Mellin transform, $p$-adic Hodge theory

Hirano, Yuichi 1

1 Graduate School of Mathematical Sciences, The University of Tokyo, 8-1 Komaba 3-chome, Meguro-ku, Tokyo, 153-8914, Japan
@article{BSMF_2018__146_1_1_0,
     author = {Hirano, Yuichi},
     title = {Congruences of modular forms and the {Iwasawa} $\lambda $-invariants},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {1--79},
     year = {2018},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {1},
     doi = {10.24033/bsmf.2752},
     mrnumber = {3864870},
     zbl = {1446.11076},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2752/}
}
TY  - JOUR
AU  - Hirano, Yuichi
TI  - Congruences of modular forms and the Iwasawa $\lambda $-invariants
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 1
EP  - 79
VL  - 146
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2752/
DO  - 10.24033/bsmf.2752
LA  - en
ID  - BSMF_2018__146_1_1_0
ER  - 
%0 Journal Article
%A Hirano, Yuichi
%T Congruences of modular forms and the Iwasawa $\lambda $-invariants
%J Bulletin de la Société Mathématique de France
%D 2018
%P 1-79
%V 146
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2752/
%R 10.24033/bsmf.2752
%G en
%F BSMF_2018__146_1_1_0
Hirano, Yuichi. Congruences of modular forms and the Iwasawa $\lambda $-invariants. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 1-79. doi: 10.24033/bsmf.2752

Ash, Avner; Stevens, Glenn Modular forms in characteristic and special values of their L-functions, Duke Math. J., Volume 53 (1986), pp. 849-868 | DOI | MR | Zbl

Amice, Yvette; Vélu, Jacques Distributions p-adiques associées aux séries de Hecke, Astérisque, Volume 24–25 (1975), pp. 119-131 | MR | Zbl | Numdam

Berger, T. An Eisenstein ideal for imaginary quadratic fields, Ph. D. Thesis , University of Michigan (2005) | MR

Breuil, Christophe; Messing, William Torsion étale and crystalline cohomologies, Astérisque, Volume 279 (2002), pp. 81-124 | MR | Zbl | Numdam

Borel, Armand Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) (Progr. Math.), Volume 14, Birkhäuser, 1981, pp. 21-55 | MR | Zbl | DOI

Breuil, Christophe Cohomologie étale de p-torsion et cohomologie cristalline en réduction semi-stable, Duke Math. J., Volume 95 (1998), pp. 523-620 | DOI | MR | Zbl

Deligne, Pierre Formes modulaires et représentations l-adiques (Séminaire Bourbaki, vol. 1968/1969, exposé no 355, Lecture Notes in Math.), Volume 175, Springer, Berlin, 1971, pp. 139-172 | MR | Zbl | Numdam

Deligne, Pierre; Rapoport, M. Les schémas de modules de courbes elliptiques, Springer Lecture Notes in Math., Volume 349 (1973), pp. 143-316 | MR | Zbl | DOI

Faltings, Gerd Crystalline cohomology and p-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25-80 | MR | Zbl

Faltings, Gerd; Jordan, Bruce W. Crystalline cohomology and GL (2,Q) , Israel J. Math., Volume 90 (1995), pp. 1-66 | DOI | MR | Zbl

Fontaine, Jean-Marc; Laffaille, Guy Construction de représentations p-adiques, Ann. Sci. École Norm. Sup., Volume 15 (1982), pp. 547-608 | Numdam | MR | Zbl | DOI

Fontaine, Jean-Marc; Messing, William p-adic periods and p-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179-207 | DOI | MR | Zbl

Friedman, Eduardo C. Ideal class groups in basic Zp1××Zps-extensions of abelian number fields, Invent. math., Volume 65 (1981/82), pp. 425-440 | DOI | MR | Zbl

Ferrero, Bruce; Washington, Lawrence C. The Iwasawa invariant μp vanishes for abelian number fields, Ann. of Math., Volume 109 (1979), pp. 377-395 | DOI | MR | Zbl

Greenberg, Ralph Iwasawa theory for p-adic representations, Algebraic number theory (Adv. Stud. Pure Math.), Volume 17, Academic Press, Boston, MA, 1989, pp. 97-137 | MR | Zbl | DOI

Greenberg, Ralph; Vatsal, Vinayak On the Iwasawa invariants of elliptic curves, Invent. math., Volume 142 (2000), pp. 17-63 | DOI | MR | Zbl

Hida, Haruzo Elementary theory of L -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages | DOI | MR | Zbl

Heumann, Jay; Vatsal, Vinayak Modular symbols, Eisenstein series, and congruences, J. Théor. Nombres Bordeaux, Volume 26 (2014), pp. 709-757 | Numdam | MR | Zbl | DOI

Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms, Astérisque, Volume 295 (2004), pp. 117-290 | MR | Zbl | Numdam

Katz, Nicholas M. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math. IHÉS, Volume 39 (1970), pp. 175-232 | Numdam | MR | Zbl | DOI

Katz, Nicholas M. p-adic properties of modular schemes and modular forms, Springer Lecture Notes in Math., Volume 350 (1973), pp. 69-190 | MR | Zbl | DOI

Kato, Kazuya Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224 | MR | Zbl

Kato, Kazuya Toric singularities, Amer. J. Math., Volume 116 (1994), pp. 1073-1099 | DOI | MR | Zbl

Katz, Nicholas M.; Mazur, Barry Arithmetic moduli of elliptic curves, Annals of Math. Studies, 108, Princeton Univ. Press, Princeton, NJ, 1985, 514 pages | DOI | MR | Zbl

Mazur, Barry On the arithmetic of special values of L functions, Invent. math., Volume 55 (1979), pp. 207-240 | DOI | MR | Zbl

Miyake, Toshitsune Modular forms, Springer Monographs in Math., Springer, Berlin, 2006, 335 pages | MR | Zbl

Mazur, Barry; Tate, J.; Teitelbaum, J. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. math., Volume 84 (1986), pp. 1-48 | DOI | MR | Zbl

Mazur, Barry; Wiles, A. Class fields of abelian extensions of Q , Invent. math., Volume 76 (1984), pp. 179-330 | DOI | MR | Zbl

Scholl, A. J. L -functions of modular forms and higher regulators (book in preparation)

Scholl, A. J. Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences, Invent. math., Volume 79 (1985), pp. 49-77 | DOI | MR | Zbl

Scholl, A. J. Motives for modular forms, Invent. math., Volume 100 (1990), pp. 419-430 | DOI | MR | Zbl

Stevens, Glenn Arithmetic on modular curves, Progress in Math., 20, Birkhäuser, 1982, 214 pages | MR | Zbl | DOI

Stevens, Glenn The cuspidal group and special values of L-functions, Trans. Amer. Math. Soc., Volume 291 (1985), pp. 519-550 | DOI | MR | Zbl

Skinner, Christopher; Urban, Eric The Iwasawa main conjectures for GL 2 , Invent. math., Volume 195 (2014), pp. 1-277 | DOI | MR | Zbl

Tsuji, Takeshi On p-adic nearby cycles of log smooth families, Bull. Soc. Math. France, Volume 128 (2000), pp. 529-575 | Numdam | MR | Zbl | DOI

Tsuji, Takeshi Semi-stable conjecture of Fontaine-Jannsen: a survey, Astérisque, Volume 279 (2002), pp. 323-370 | MR | Zbl | Numdam

Ulmer, Douglas L. On the Fourier coefficients of modular forms, Ann. Sci. École Norm. Sup., Volume 28 (1995), pp. 129-160 | Numdam | MR | Zbl | DOI

Ulmer, Douglas L. On the Fourier coefficients of modular forms. II, Math. Ann., Volume 304 (1996), pp. 363-422 | DOI | MR | Zbl

Vatsal, Vinayak Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999), pp. 397-419 | DOI | MR | Zbl

Višik, M. M. Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), Volume 99 (1976), pp. 248-260 | MR | Zbl

Wach, Nathalie Représentations cristallines de torsion, Compos. math., Volume 108 (1997), pp. 185-240 | DOI | MR | Zbl

Washington, Lawrence C. Introduction to cyclotomic fields, Graduate Texts in Math., 83, Springer, New York, 1997, 487 pages | DOI | MR | Zbl

Wiles, A. On ordinary λ-adic representations associated to modular forms, Invent. math., Volume 94 (1988), pp. 529-573 | DOI | MR | Zbl

Cité par Sources :