[Congruences de formes modulaires et -invariants d’Iwasawa]
In this paper, we show how congruences between cusp forms and Eisenstein series of weight give rise to corresponding congruences between the algebraic parts of the critical values of the associated -functions. This is a generalization of results of Mazur, Stevens, and Vatsal in the case where . As an application, by proving congruences between the -adic -function of a certain cusp form and the product of two Kubota-Leopoldt -adic -functions, we prove the Iwasawa main conjecture (up to -power) for cusp forms at ordinary primes when the associated residual Galois representations are reducible. This is a generalization of Greenberg and Vatsal in the case where .
Dans cet article, nous montrons comment les congruences entre formes paraboliques et séries d’Eisenstein de poids donnent lieu à des congruences entre les parties algébriques des valeurs critiques des fonctions associées. C’est une généralisation des travaux de Mazur, Stevens et Vatsal dans le cas où . Comme application, en prouvant des congruences entre la fonction -adique d’une certaine forme parabolique et le produit de deux fonctions de Kubota-Leopoldt -adiques , nous prouvons la conjecture principale d’Iwasawa (à puissance près) pour les formes paraboliques à nombres premiers ordinaires lorsque les représentations de Galois résiduelles associées sont réductibles. C’est une généralisation des travaux de Greenberg et Vatsal dans le cas où .
Keywords: Congruences of modular forms, special values of $L$-functions, Iwasawa theory, Eisenstein series, Mellin transform, $p$-adic Hodge theory
Hirano, Yuichi 1
@article{BSMF_2018__146_1_1_0,
author = {Hirano, Yuichi},
title = {Congruences of modular forms and the {Iwasawa} $\lambda $-invariants},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {1--79},
year = {2018},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {146},
number = {1},
doi = {10.24033/bsmf.2752},
mrnumber = {3864870},
zbl = {1446.11076},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2752/}
}
TY - JOUR AU - Hirano, Yuichi TI - Congruences of modular forms and the Iwasawa $\lambda $-invariants JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 1 EP - 79 VL - 146 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2752/ DO - 10.24033/bsmf.2752 LA - en ID - BSMF_2018__146_1_1_0 ER -
%0 Journal Article %A Hirano, Yuichi %T Congruences of modular forms and the Iwasawa $\lambda $-invariants %J Bulletin de la Société Mathématique de France %D 2018 %P 1-79 %V 146 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2752/ %R 10.24033/bsmf.2752 %G en %F BSMF_2018__146_1_1_0
Hirano, Yuichi. Congruences of modular forms and the Iwasawa $\lambda $-invariants. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 1, pp. 1-79. doi: 10.24033/bsmf.2752
Modular forms in characteristic and special values of their -functions, Duke Math. J., Volume 53 (1986), pp. 849-868 | DOI | MR | Zbl
Distributions -adiques associées aux séries de Hecke, Astérisque, Volume 24–25 (1975), pp. 119-131 | MR | Zbl | Numdam
An Eisenstein ideal for imaginary quadratic fields, Ph. D. Thesis , University of Michigan (2005) | MR
Torsion étale and crystalline cohomologies, Astérisque, Volume 279 (2002), pp. 81-124 | MR | Zbl | Numdam
Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) (Progr. Math.), Volume 14, Birkhäuser, 1981, pp. 21-55 | MR | Zbl | DOI
Cohomologie étale de -torsion et cohomologie cristalline en réduction semi-stable, Duke Math. J., Volume 95 (1998), pp. 523-620 | DOI | MR | Zbl
Formes modulaires et représentations -adiques (Séminaire Bourbaki, vol. 1968/1969, exposé no 355, Lecture Notes in Math.), Volume 175, Springer, Berlin, 1971, pp. 139-172 | MR | Zbl | Numdam
Les schémas de modules de courbes elliptiques, Springer Lecture Notes in Math., Volume 349 (1973), pp. 143-316 | MR | Zbl | DOI
Crystalline cohomology and -adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25-80 | MR | Zbl
Crystalline cohomology and , Israel J. Math., Volume 90 (1995), pp. 1-66 | DOI | MR | Zbl
Construction de représentations -adiques, Ann. Sci. École Norm. Sup., Volume 15 (1982), pp. 547-608 | Numdam | MR | Zbl | DOI
-adic periods and -adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179-207 | DOI | MR | Zbl
Ideal class groups in basic -extensions of abelian number fields, Invent. math., Volume 65 (1981/82), pp. 425-440 | DOI | MR | Zbl
The Iwasawa invariant vanishes for abelian number fields, Ann. of Math., Volume 109 (1979), pp. 377-395 | DOI | MR | Zbl
Iwasawa theory for -adic representations, Algebraic number theory (Adv. Stud. Pure Math.), Volume 17, Academic Press, Boston, MA, 1989, pp. 97-137 | MR | Zbl | DOI
On the Iwasawa invariants of elliptic curves, Invent. math., Volume 142 (2000), pp. 17-63 | DOI | MR | Zbl
Elementary theory of -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages | DOI | MR | Zbl
Modular symbols, Eisenstein series, and congruences, J. Théor. Nombres Bordeaux, Volume 26 (2014), pp. 709-757 | Numdam | MR | Zbl | DOI
-adic Hodge theory and values of zeta functions of modular forms, Astérisque, Volume 295 (2004), pp. 117-290 | MR | Zbl | Numdam
Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math. IHÉS, Volume 39 (1970), pp. 175-232 | Numdam | MR | Zbl | DOI
-adic properties of modular schemes and modular forms, Springer Lecture Notes in Math., Volume 350 (1973), pp. 69-190 | MR | Zbl | DOI
Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224 | MR | Zbl
Toric singularities, Amer. J. Math., Volume 116 (1994), pp. 1073-1099 | DOI | MR | Zbl
Arithmetic moduli of elliptic curves, Annals of Math. Studies, 108, Princeton Univ. Press, Princeton, NJ, 1985, 514 pages | DOI | MR | Zbl
On the arithmetic of special values of functions, Invent. math., Volume 55 (1979), pp. 207-240 | DOI | MR | Zbl
Modular forms, Springer Monographs in Math., Springer, Berlin, 2006, 335 pages | MR | Zbl
On -adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. math., Volume 84 (1986), pp. 1-48 | DOI | MR | Zbl
Class fields of abelian extensions of , Invent. math., Volume 76 (1984), pp. 179-330 | DOI | MR | Zbl
-functions of modular forms and higher regulators (book in preparation)
Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences, Invent. math., Volume 79 (1985), pp. 49-77 | DOI | MR | Zbl
Motives for modular forms, Invent. math., Volume 100 (1990), pp. 419-430 | DOI | MR | Zbl
Arithmetic on modular curves, Progress in Math., 20, Birkhäuser, 1982, 214 pages | MR | Zbl | DOI
The cuspidal group and special values of -functions, Trans. Amer. Math. Soc., Volume 291 (1985), pp. 519-550 | DOI | MR | Zbl
The Iwasawa main conjectures for , Invent. math., Volume 195 (2014), pp. 1-277 | DOI | MR | Zbl
On -adic nearby cycles of log smooth families, Bull. Soc. Math. France, Volume 128 (2000), pp. 529-575 | Numdam | MR | Zbl | DOI
Semi-stable conjecture of Fontaine-Jannsen: a survey, Astérisque, Volume 279 (2002), pp. 323-370 | MR | Zbl | Numdam
On the Fourier coefficients of modular forms, Ann. Sci. École Norm. Sup., Volume 28 (1995), pp. 129-160 | Numdam | MR | Zbl | DOI
On the Fourier coefficients of modular forms. II, Math. Ann., Volume 304 (1996), pp. 363-422 | DOI | MR | Zbl
Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999), pp. 397-419 | DOI | MR | Zbl
Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.), Volume 99 (1976), pp. 248-260 | MR | Zbl
Représentations cristallines de torsion, Compos. math., Volume 108 (1997), pp. 185-240 | DOI | MR | Zbl
Introduction to cyclotomic fields, Graduate Texts in Math., 83, Springer, New York, 1997, 487 pages | DOI | MR | Zbl
On ordinary -adic representations associated to modular forms, Invent. math., Volume 94 (1988), pp. 529-573 | DOI | MR | Zbl
Cité par Sources :






