Dans cet article, nous généralisons au cas localement compact et régulier, deux résultats fondamentaux [10] [27] portant sur les actions des groupes quantiques compacts. Soient et deux groupes quantiques localement compacts monoïdalement équivalents [6, 7] au sens de De Commer, et réguliers. Par un procédé d’induction que nous introduisons, nous établissons une équivalence des catégories et formées par les actions des groupes et dans les C*-algèbres. Comme application de ce résultat, nous déduisons l’équivalence des catégories et . La preuve s’appuie sur une version de la dualité de Takesaki-Takai pour les actions continues dans les C*-algèbres d’un groupoïde mesuré quantique de base finie.
In this article, we generalize to the case of regular locally compact quantum groups, two important results concerning actions of compact quantum groups (see [10] and [27]). Let and be two monoïdally equivalent regular locally compact quantum groups in the sense of De Commer (see [6, 7]). We introduce an induction procedure and we build an equivalence of the categories and consisting of continuous actions of and on C*-algebras. As an application of this result, we derive a canonical equivalence of the categories and . We introduce and investigate a notion of actions on C*-algebras of measured quantum groupoids (see [12]) on a finite basis. The proof of the equivalence between and relies on a version of the Takesaki-Takai duality theorem for continuous actions on C*-algebras of measured quantum groupoids on a finite basis.
Keywords: Locally compact quantum groups, monoidal equivalence, bivariant K-theory.
Baaj, Saad 1 ; Crespo, Jonathan 
@article{BSMF_2017__145_4_711_0,
author = {Baaj, Saad and Crespo, Jonathan},
title = {\'Equivalence mono{\"\i}dale de groupes quantiques et~$K$-th\'eorie bivariante},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {711--802},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {4},
doi = {10.24033/bsmf.2751},
mrnumber = {3770971},
zbl = {1392.46058},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2751/}
}
TY - JOUR AU - Baaj, Saad AU - Crespo, Jonathan TI - Équivalence monoïdale de groupes quantiques et $K$-théorie bivariante JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 711 EP - 802 VL - 145 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2751/ DO - 10.24033/bsmf.2751 LA - fr ID - BSMF_2017__145_4_711_0 ER -
%0 Journal Article %A Baaj, Saad %A Crespo, Jonathan %T Équivalence monoïdale de groupes quantiques et $K$-théorie bivariante %J Bulletin de la Société Mathématique de France %D 2017 %P 711-802 %V 145 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2751/ %R 10.24033/bsmf.2751 %G fr %F BSMF_2017__145_4_711_0
Baaj, Saad; Crespo, Jonathan. Équivalence monoïdale de groupes quantiques et $K$-théorie bivariante. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 711-802. doi: 10.24033/bsmf.2751
Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., Volume 262 (2006), pp. 703-728 | DOI | MR | Zbl
-algèbres de Hopf et théorie de Kasparov équivariante, -Theory, Volume 2 (1989), pp. 683-721 | DOI | MR | Zbl
Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup., Volume 26 (1993), pp. 425-488 | Numdam | MR | Zbl | DOI
Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003), pp. 139-167 | DOI | MR | Zbl
Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, 661 pages | MR | Zbl
CCAP for universal discrete quantum groups, Comm. Math. Phys., Volume 331 (2014), pp. 677-701 | DOI | MR | Zbl
Monoidal equivalence for locally compact quantum groups (preprint arXiv :math.OA/0804.2405 )
Galois coactions for algebraic and locally compact quantum groups, Ph. D. Thesis , Katholieke Universiteit Leuven (2009)
On a Morita equivalence between the duals of quantum and quantum , Adv. Math., Volume 229 (2012), pp. 1047-1079 | DOI | MR | Zbl
Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 169-216 | Numdam | MR | Zbl | DOI
Quantum groupoids of compact type, J. Inst. Math. Jussieu, Volume 4 (2005), pp. 29-133 | DOI | MR | Zbl
Measured quantum groupoids in action, Mém. Soc. Math. Fr., Volume 114 (2008), p. 150 pp. (2009) | MR | Zbl | Numdam
Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math., Volume 169 (2002), pp. 1-57 | DOI | MR | Zbl
Rieffel deformation of group coactions, Comm. Math. Phys., Volume 300 (2010), pp. 741-763 | DOI | MR | Zbl
Hilbert -modules : theorems of Stinespring and Voiculescu, J. Operator Theory, Volume 4 (1980), pp. 133-150 | MR | Zbl
Equivariant -theory and the Novikov conjecture, Invent. math., Volume 91 (1988), pp. 147-201 | DOI | MR | Zbl
Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., Volume 92 (2003), pp. 68-92 | DOI | MR | Zbl
Measured quantum groupoids, Mém. Soc. Math. Fr., Volume 109 (2007), p. 158 pp. (2008) | MR | Zbl | Numdam
Deformation of -algebras by cocycles on locally compact quantum groups, Adv. Math., Volume 254 (2014), pp. 454-496 | DOI | MR | Zbl
Pseudo-multiplicative unitaries on -modules and Hopf -families. I, J. Noncommut. Geom., Volume 1 (2007), pp. 497-542 | DOI | MR | Zbl
Coactions of Hopf -bimodules, J. Operator Theory, Volume 68 (2012), pp. 19-66 | MR | Zbl
The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001), pp. 426-480 | DOI | MR | Zbl
Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000), pp. 347-368 | MR | Zbl
The Baum-Connes conjecture for free orthogonal quantum groups, Adv. Math., Volume 227 (2011), pp. 1873-1913 | DOI | MR | Zbl
The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., Volume 140 (2007), pp. 35-84 | DOI | MR | Zbl
The -theory of free quantum groups, Math. Ann., Volume 357 (2013), pp. 355-400 | DOI | MR | Zbl
Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups, J. Inst. Math. Jussieu, Volume 7 (2008), pp. 391-412 | DOI | MR | Zbl
Cité par Sources :






