A Paradifferential Reduction for the Gravity-capillary Waves System at Low Regularity and Applications
[Une réduction paradifférentielle du système des vagues de gravité-capillarité à basse régularité et applications]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 643-710

We consider in this article the system of gravity-capillary waves in all dimensions and under the Zakharov/Craig-Sulem formulation. Using a paradifferential approach introduced by Alazard-Burq-Zuily, we symmetrize this system into a quasilinear dispersive equation whose principal part is of order 32. The main novelty, compared to earlier studies, is that this reduction is performed at the Sobolev regularity of quasilinear pdes: Hs(Rd) with s>32+d2, d being the dimension of the free surface.

From this reduction, we deduce a blow-up criterion involving solely the Lipschitz norm of the velocity trace and the C52+-norm of the free surface. Moreover, we obtain an a priori estimate in the Hs-norm and the contraction of the solution map in the Hs-32-norm using the control of a Strichartz norm. These results have been applied in establishing a local well-posedness theory for non-Lipschitz initial velocity in our companion paper [24].

Dans cet article, nous étudions le système des vagues de gravité-capillarité en toutes dimensions, dans la formulation de Zakharov, Craig et Sulem. À l’aide d’une approche paradifférentielle introduite par Alazard, Burq et Zuily, nous symétrisons ce système en une équation dispersive quasilinéaire dont le terme principal est d’ordre 32. La principale nouveauté par rapport aux études précédentes est que cette réduction est effectuée au niveau de régularité des EDPs quasilinéaires : Hs(Rd) avec s>32+d2, d étant la dimension de la surface libre. À partir de cette réduction, nous déduisons un critère d’explosion n’impliquant que la norme Lipschitz de la trace de la vitesse et la norme C52+ de la surface libre. En outre, nous obtenons une estimation a priori de la norme Hs et la contraction de l’application solution dans la norme Hs-32, en utilisant le contrôle d’une norme de Strichartz. Ces résultats ont été utilisés pour développer une théorie de Cauchy locale pour des vitesses initiales non Lipschitz, dans le papier compagnon [24].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2750
Classification : 35Q35, 35A01, 35B45, 35B65, 76B15
Keywords: Gravity-capillary waves, paradifferential reduction, blow-up criterion, a priori estimate, contraction of the solution map.
Mots-clés : Vagues de gravité-capillarité, réduction paradifférentielle, critère d’explosion, estimations a priori, contraction de l’application solution.

de Poyferré, Thibault 1 ; Nguyen, Quang-Huy 2

1 UMR 8553 du CNRS, Laboratoire de Mathématiques et Applications de l’Ecole Normale Supérieure, 75005 Paris, France
2 UMR 8628 du CNRS, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.
@article{BSMF_2017__145_4_643_0,
     author = {de Poyferr\'e, Thibault and Nguyen, Quang-Huy},
     title = {A {Paradifferential} {Reduction} for the {Gravity-capillary} {Waves} {System} at {Low} {Regularity} and {Applications}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {643--710},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {4},
     doi = {10.24033/bsmf.2750},
     mrnumber = {3770970},
     zbl = {1397.35237},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2750/}
}
TY  - JOUR
AU  - de Poyferré, Thibault
AU  - Nguyen, Quang-Huy
TI  - A Paradifferential Reduction for the Gravity-capillary Waves System at Low Regularity and Applications
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 643
EP  - 710
VL  - 145
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2750/
DO  - 10.24033/bsmf.2750
LA  - en
ID  - BSMF_2017__145_4_643_0
ER  - 
%0 Journal Article
%A de Poyferré, Thibault
%A Nguyen, Quang-Huy
%T A Paradifferential Reduction for the Gravity-capillary Waves System at Low Regularity and Applications
%J Bulletin de la Société Mathématique de France
%D 2017
%P 643-710
%V 145
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2750/
%R 10.24033/bsmf.2750
%G en
%F BSMF_2017__145_4_643_0
de Poyferré, Thibault; Nguyen, Quang-Huy. A Paradifferential Reduction for the Gravity-capillary Waves System at Low Regularity and Applications. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 643-710. doi: 10.24033/bsmf.2750

Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimate and the Cauchy problem for the gravity water waves equations (preprint arXiv:1404.4276 ) | MR

Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011), pp. 413-499 | MR | Zbl | DOI

Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimates for water waves, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 855-903 | MR | Zbl | Numdam | DOI

Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the Cauchy problem for gravity water waves, Invent. math., Volume 198 (2014), pp. 71-163 | MR | Zbl | DOI

Alazard, Thomas; Métivier, Guy Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations, Volume 34 (2009), pp. 1632-1704 | MR | Zbl | DOI

Bahouri, Hajer; Chemin, Jean-Yves Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Volume 121 (1999), pp. 1337-1377 http://muse.jhu.edu/... | MR | Zbl | DOI

Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundl. math. Wiss., 343, Springer, Heidelberg, 2011, 523 pages | MR | Zbl | DOI

Beale, J. T.; Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., Volume 94 (1984), pp. 61-66 http://projecteuclid.org/euclid.cmp/1103941230 | MR | Zbl | DOI

Bony, Jean-Michel Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl | DOI

Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations, Volume 10 (1985), pp. 787-1003 | MR | Zbl | DOI

Coutand, Daniel; Shkoller, Steve Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 829-930 | MR | Zbl | DOI

de Poyferré, Thibault Blow-up conditions for gravity water-waves (preprint arXiv:1407.6881 )

de Poyferré, Thibault; Nguyen, Quang-Huy Strichartz estimates and local existence for the gravity-capillary waves with non-Lipschitz initial velocity, J. Differential Equations, Volume 261 (2016), pp. 396-438 | MR | Zbl | DOI

Ferrari, Andrew B. On the blow-up of solutions of the 3-D Euler equations in a bounded domain, Comm. Math. Phys., Volume 155 (1993), pp. 277-294 http://projecteuclid.org/euclid.cmp/1104253281 | MR | Zbl | DOI

Hunter, John; Ifrim, Mihaela; Tataru, Daniel Two dimensional water waves in holomorphic coordinates (preprint arXiv:1401.1252 ) | MR

Hörmander, Lars Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), 26, Springer, Berlin, 1997, 289 pages | MR | Zbl

Kinsey, Rafe Hand A Priori Estimates for Two-Dimensional Water Waves with Angled Crests, Ph. D. Thesis , University of Michigan (2014) | MR

Kreĭg, V.; Veĭn, K. E. Mathematical aspects of surface waves on water, Uspekhi Mat. Nauk, Volume 62 (2007), pp. 95-116 | DOI | MR

Lannes, David Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654 | MR | Zbl | DOI

Lannes, David The water waves problem, Mathematical Surveys and Monographs, 188, Amer. Math. Soc., Providence, RI, 2013, 321 pages | MR | Zbl | DOI

Lions, J.-L.; Magenes, E. Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968, 372 pages | MR | Zbl

Métivier, Guy Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, 5, Edizioni della Normale, Pisa, 2008, 140 pages | MR | Zbl

Ming, Mei; Zhang, Zhifei Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl., Volume 92 (2009), pp. 429-455 | MR | Zbl | DOI

Nalimov, V. I. The Cauchy-Poisson problem, Dinamika Splošn. Sredy, Volume 18 (1974), p. 104-210, 254 | MR

Shatah, Jalal; Zeng, Chongchun A priori estimates for fluid interface problems, Comm. Pure Appl. Math., Volume 61 (2008), pp. 848-876 | MR | Zbl | DOI

Shatah, Jalal; Zeng, Chongchun Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., Volume 61 (2008), pp. 698-744 | MR | Zbl | DOI

Shatah, Jalal; Zeng, Chongchun Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 653-705 | MR | Zbl | DOI

Wu, Sijue A blow-up criteria and the existence of 2d gravity water waves with angled crests (preprint arXiv:1502.05342 )

Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. math., Volume 130 (1997), pp. 39-72 | MR | Zbl | DOI

Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495 | MR | Zbl | DOI

Wang, Chao; Zhang, ZhiFei Break-down criterion for the water-wave equation, Sci. China Math., Volume 60 (2017), pp. 21-58 | MR | Zbl | DOI

Wang, Chao; Zhang, Zhifei; Zhao, Weiren; Zheng, Yunrui Local well-posedness and break-down criterion of the incompressible Euler equations with free boundary (preprint arXiv:1507.02478 ) | MR

Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96 | MR | Zbl | DOI

Zakhariv, Vladimir E. Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, Volume 9 (1968), pp. 190-194 | DOI

Cité par Sources :