Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces
[Croissance de norme avec perte infinie de régularité pour les équations de Schrödinger périodiques en régularité négative]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 623-642

In this paper we consider Schrödinger equations with nonlinearities of odd order 2σ+1 on 𝕋d. We prove that for σd2, they are strongly illposed in the Sobolev space Hs for any s<0, exhibiting norm-inflation with infinite loss of regularity. In the case of the one-dimensional cubic nonlinear Schrödinger equation and its renormalized version we prove such a result for Hs with s<-2/3.

Nous considérons des équations de Schrödinger avec des non-linéarités d’ordre impair 2σ+1 sur le tore 𝕋d. Nous montrons que pour σd2, ces équations sont fortement mal posées dans l’espace de Sobolev Hs pour tout s<0, avec en outre un phénomène de perte infinie de régularité. Dans le cas cubique mono-dimensionnel et sa version renormalisée, nous montrons le même résultat dans Hs, sous l’hypothèse s<-2/3.

Reçu le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2749
Classification : 35Q55, 35A01, 35B30, 81Q20
Keywords: Nonlinear Schrödinger equation, periodic case, well-posedness, loss of regularity, geometric optics, semi-classical analysis
Mots-clés : Équation de Schrödinger non linéaire, cas périodique, caractère bien posé, perte de régularité, optique géométrique, analyse semi-classique

Carles, Rémi 1 ; Kappeler, Thomas 2

1 Institut Montpelliérain Alexander Grothendieck CNRS Univ. Montpellier
2 Institut für Mathematik Universität Zürich Winterthurerstr. 190 CH-8057 Zürich
@article{BSMF_2017__145_4_623_0,
     author = {Carles, R\'emi and Kappeler, Thomas},
     title = {Norm-inflation with {Infinite} {Loss} of {Regularity} for {Periodic} {NLS} {Equations} in {Negative} {Sobolev} {Spaces}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {623--642},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {4},
     doi = {10.24033/bsmf.2749},
     mrnumber = {3770969},
     zbl = {1428.35488},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2749/}
}
TY  - JOUR
AU  - Carles, Rémi
AU  - Kappeler, Thomas
TI  - Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 623
EP  - 642
VL  - 145
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2749/
DO  - 10.24033/bsmf.2749
LA  - en
ID  - BSMF_2017__145_4_623_0
ER  - 
%0 Journal Article
%A Carles, Rémi
%A Kappeler, Thomas
%T Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces
%J Bulletin de la Société Mathématique de France
%D 2017
%P 623-642
%V 145
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2749/
%R 10.24033/bsmf.2749
%G en
%F BSMF_2017__145_4_623_0
Carles, Rémi; Kappeler, Thomas. Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 623-642. doi: 10.24033/bsmf.2749

Alazard, T.; Carles, R. Loss of regularity for super-critical nonlinear Schrödinger equations, Math. Ann., Volume 343 (2009), pp. 397-420 | HAL | MR | Zbl | DOI

Bejenaru, I.; Tao, T. Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., Volume 233 (2005), pp. 228-259 | MR | Zbl | DOI

Carles, R. Semi-classical analysis for nonlinear Schrödinger equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008, 243 pages | MR | Zbl | DOI

Christ, M.; Colliander, J.; Tao, T. Ill-posedness for nonlinear Schrödinger and wave equations (preprint arXiv:math.AP/0311048 )

Christ, M.; Colliander, J.; Tao, T. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., Volume 125 (2003), pp. 1235-1293 | MR | Zbl | DOI

Carles, R.; Dumas, E.; Sparber, C. Multiphase weakly nonlinear geometric optics for Schrödinger equations, SIAM J. Math. Anal., Volume 42 (2010), pp. 489-518 | MR | Zbl | DOI

Carles, R.; Dumas, E.; Sparber, C. Geometric optics and instability for NLS and Davey-Stewartson models, J. Eur. Math. Soc. (JEMS), Volume 14 (2012), pp. 1885-1921 | HAL | MR | Zbl | DOI

Carles, R.; Faou, E. Energy cascade for NLS on the torus, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 2063-2077 | arXiv | MR | Zbl | DOI

Christ, M. Nonuniqueness of weak solutions of the nonlinear Schrödinger equation (preprint arXiv:math/0503366 )

Christ, M. Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Ann. of Math. Stud.), Volume 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 131-155 | MR | Zbl

Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. math., Volume 181 (2010), pp. 39-113 | MR | Zbl | DOI

Colin, M.; Lannes, D. Short pulses approximations in dispersive media, SIAM J. Math. Anal., Volume 41 (2009), pp. 708-732 | MR | Zbl | DOI

Dispersive Wiki page, Cubic NLS , http://wiki.math.toronto.edu/DispersiveWiki

Grünrock, Axel; Herr, Sebastian Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., Volume 39 (2008), pp. 1890-1920 | MR | Zbl | DOI

Grébert, Benoît; Thomann, Laurent Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 29 (2012), pp. 455-477 | MR | Zbl | Numdam | DOI

Iwabuchi, Tsukasa; Ogawa, Takayoshi Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 2613-2630 | MR | Zbl | DOI

Joly, J.-L.; Métivier, G.; Rauch, J. Coherent nonlinear waves and the Wiener algebra, Ann. Inst. Fourier (Grenoble), Volume 44 (1994), pp. 167-196 | MR | Zbl | Numdam | DOI

Oh, Tadahiro; Sulem, Catherine On the one-dimensional cubic nonlinear Schrödinger equation below L2 , Kyoto J. Math., Volume 52 (2012), pp. 99-115 | MR | Zbl | DOI

Oh, Tadahiro; Wang, Yuzhao On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) (to appear, archived as arXiv:1508.00827 ) | MR | Zbl

Thomann, Laurent Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations, Volume 245 (2008), pp. 249-280 | MR | Zbl | DOI

Cité par Sources :