[Croissance de norme avec perte infinie de régularité pour les équations de Schrödinger périodiques en régularité négative]
In this paper we consider Schrödinger equations with nonlinearities of odd order on . We prove that for , they are strongly illposed in the Sobolev space for any , exhibiting norm-inflation with infinite loss of regularity. In the case of the one-dimensional cubic nonlinear Schrödinger equation and its renormalized version we prove such a result for with
Nous considérons des équations de Schrödinger avec des non-linéarités d’ordre impair sur le tore . Nous montrons que pour , ces équations sont fortement mal posées dans l’espace de Sobolev pour tout , avec en outre un phénomène de perte infinie de régularité. Dans le cas cubique mono-dimensionnel et sa version renormalisée, nous montrons le même résultat dans , sous l’hypothèse .
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2749
Keywords: Nonlinear Schrödinger equation, periodic case, well-posedness, loss of regularity, geometric optics, semi-classical analysis
Mots-clés : Équation de Schrödinger non linéaire, cas périodique, caractère bien posé, perte de régularité, optique géométrique, analyse semi-classique
Carles, Rémi 1 ; Kappeler, Thomas 2
@article{BSMF_2017__145_4_623_0,
author = {Carles, R\'emi and Kappeler, Thomas},
title = {Norm-inflation with {Infinite} {Loss} of {Regularity} for {Periodic} {NLS} {Equations} in {Negative} {Sobolev} {Spaces}},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {623--642},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {4},
doi = {10.24033/bsmf.2749},
mrnumber = {3770969},
zbl = {1428.35488},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2749/}
}
TY - JOUR AU - Carles, Rémi AU - Kappeler, Thomas TI - Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 623 EP - 642 VL - 145 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2749/ DO - 10.24033/bsmf.2749 LA - en ID - BSMF_2017__145_4_623_0 ER -
%0 Journal Article %A Carles, Rémi %A Kappeler, Thomas %T Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces %J Bulletin de la Société Mathématique de France %D 2017 %P 623-642 %V 145 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2749/ %R 10.24033/bsmf.2749 %G en %F BSMF_2017__145_4_623_0
Carles, Rémi; Kappeler, Thomas. Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 4, pp. 623-642. doi: 10.24033/bsmf.2749
Loss of regularity for super-critical nonlinear Schrödinger equations, Math. Ann., Volume 343 (2009), pp. 397-420 | HAL | MR | Zbl | DOI
Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., Volume 233 (2005), pp. 228-259 | MR | Zbl | DOI
Semi-classical analysis for nonlinear Schrödinger equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008, 243 pages | MR | Zbl | DOI
Ill-posedness for nonlinear Schrödinger and wave equations (preprint arXiv:math.AP/0311048 )
Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., Volume 125 (2003), pp. 1235-1293 | MR | Zbl | DOI
Multiphase weakly nonlinear geometric optics for Schrödinger equations, SIAM J. Math. Anal., Volume 42 (2010), pp. 489-518 | MR | Zbl | DOI
Geometric optics and instability for NLS and Davey-Stewartson models, J. Eur. Math. Soc. (JEMS), Volume 14 (2012), pp. 1885-1921 | HAL | MR | Zbl | DOI
Energy cascade for NLS on the torus, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 2063-2077 | arXiv | MR | Zbl | DOI
Nonuniqueness of weak solutions of the nonlinear Schrödinger equation (preprint arXiv:math/0503366 )
Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Ann. of Math. Stud.), Volume 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 131-155 | MR | Zbl
Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. math., Volume 181 (2010), pp. 39-113 | MR | Zbl | DOI
Short pulses approximations in dispersive media, SIAM J. Math. Anal., Volume 41 (2009), pp. 708-732 | MR | Zbl | DOI
Dispersive Wiki page, Cubic NLS , http://wiki.math.toronto.edu/DispersiveWiki
Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., Volume 39 (2008), pp. 1890-1920 | MR | Zbl | DOI
Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 29 (2012), pp. 455-477 | MR | Zbl | Numdam | DOI
Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 2613-2630 | MR | Zbl | DOI
Coherent nonlinear waves and the Wiener algebra, Ann. Inst. Fourier (Grenoble), Volume 44 (1994), pp. 167-196 | MR | Zbl | Numdam | DOI
On the one-dimensional cubic nonlinear Schrödinger equation below , Kyoto J. Math., Volume 52 (2012), pp. 99-115 | MR | Zbl | DOI
On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) (to appear, archived as arXiv:1508.00827 ) | MR | Zbl
Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations, Volume 245 (2008), pp. 249-280 | MR | Zbl | DOI
Cité par Sources :






