Differential forms in positive characteristic avoiding resolution of singularities
[Formes différentielles en caractéristique positive en évitant la résolution de singularités]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 305-343

This paper studies several notions of sheaves of differential forms that are better behaved on singular varieties than Kähler differentials. Our main focus lies on varieties that are defined over fields of positive characteristic. We identify two promising notions: the sheafification with respect to the cdh-topology, and right Kan extension from the subcategory of smooth varieties to the category of all varieties. Our main results are that both are cdh-sheaves and agree with Kähler differentials on smooth varieties. They agree on all varieties under weak resolution of singularities.

A number of examples highlight the difficulties that arise with torsion forms and with alternative candiates.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2739
Classification : 14F10, 14F20, 14J17, 14F40
Keywords: Differential forms, singularities, cdh-topology

Huber, Annette 1 ; Kebekus, Stefan 2 ; Kelly, Shane 1

1 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104 Freiburg im Breisgau, Germany
2 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104 Freiburg im Breisgau, Germany and University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
@article{BSMF_2017__145_2_305_0,
     author = {Huber, Annette and Kebekus, Stefan and Kelly, Shane},
     title = {Differential forms in positive characteristic avoiding resolution of singularities},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {305--343},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {2},
     doi = {10.24033/bsmf.2739},
     mrnumber = {3749788},
     zbl = {1401.14103},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2739/}
}
TY  - JOUR
AU  - Huber, Annette
AU  - Kebekus, Stefan
AU  - Kelly, Shane
TI  - Differential forms in positive characteristic avoiding resolution of singularities
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 305
EP  - 343
VL  - 145
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2739/
DO  - 10.24033/bsmf.2739
LA  - en
ID  - BSMF_2017__145_2_305_0
ER  - 
%0 Journal Article
%A Huber, Annette
%A Kebekus, Stefan
%A Kelly, Shane
%T Differential forms in positive characteristic avoiding resolution of singularities
%J Bulletin de la Société Mathématique de France
%D 2017
%P 305-343
%V 145
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2739/
%R 10.24033/bsmf.2739
%G en
%F BSMF_2017__145_2_305_0
Huber, Annette; Kebekus, Stefan; Kelly, Shane. Differential forms in positive characteristic avoiding resolution of singularities. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 305-343. doi: 10.24033/bsmf.2739

Artin, M.; Grothendieck, A.; Verdier, J.-L. Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Math., 305, Springer, Berlin-New York, 1973, 640 pages (avec la collaboration de P. Deligne et B. Saint-Donat) | MR

Bourbaki, N. Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964, 207 pages | MR | Zbl

de Jong, A. J. Smoothness, semi-stability and alterations, Publ. Math. IHÉS, Volume 83 (1996), pp. 51-93 | Numdam | MR | Zbl | DOI

Eisenbud, David Commutative algebra, Graduate Texts in Math., 150, Springer, New York, 1995, 785 pages | MR | Zbl | DOI

Ferrari, Aldo Cohomology and holomorphic differential forms on complex analytic spaces, Ann. Scuola Norm. Sup. Pisa, Volume 24 (1970), pp. 65-77 | MR | Zbl | Numdam

Flenner, Hubert Die Sätze von Bertini für lokale Ringe, Math. Ann., Volume 229 (1977), pp. 97-111 | MR | Zbl | DOI

Grothendieck, A.; Dieudonné, J. A. Eléments de géométrie algébrique. I, Grundl. math. Wiss., 166, Springer, Berlin, 1971, 466 pages | MR | Zbl

Geisser, Thomas Arithmetic cohomology over finite fields and special values of ζ-functions, Duke Math. J., Volume 133 (2006), pp. 27-57 | MR | Zbl | DOI

Goodwillie, T. G.; Lichtenbaum, S. A cohomological bound for the h-topology, Amer. J. Math., Volume 123 (2001), pp. 425-443 http://muse.jhu.edu/... | MR | Zbl | DOI

Gabber, Ofer; Ramero, Lorenzo Almost ring theory, Lecture Notes in Math., 1800, Springer, Berlin, 2003, 307 pages | MR | Zbl | DOI

Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. IHÉS, Volume 28 (1966), p. 255 | MR | Zbl | Numdam

Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. IHÉS, Volume 32 (1967), p. 361 | Numdam | MR | Zbl

Hartshorne, Robin Algebraic geometry, Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages | MR | Zbl | DOI

Huber, Annette; Jörder, Clemens Differential forms in the h-topology, Algebraic Geometry, Volume 4 (2014), pp. 449-478 | MR | Zbl | DOI

Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Illusie, Luc; Laszlo, Yves; Orgogozo, Fabrice, eds.), Astérisque, 363–364, Soc. Math. France, Paris, 2014, p. i-xxiv and 1–625 | MR | Numdam | Zbl

Kebekus, Stefan Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 | MR | Zbl | DOI

Kelly, Shane Triangulated categories of motives in positive characteristic, Ph. D. Thesis , Université Paris 13 & Australian National University (2012) ( arXiv:1305.5349 )

Kahn, Bruno; Saito, Shuji; Yamazaki, Takao Reciprocity sheaves, Compos. Math., Volume 152 (2016), pp. 1851-1898 | MR | Zbl | DOI

Lazard, Daniel Autour de la platitude, Bull. Soc. Math. France, Volume 97 (1969), pp. 81-128 | Numdam | MR | Zbl | DOI

Matsumura, Hideyuki Commutative algebra, W. A. Benjamin, Inc., New York, 1970, 262 pp. paperbound pages | MR | Zbl

Morel, Fabien 𝔸 1 -algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, 259 pages | MR | Zbl | DOI

Raynaud, Michel; Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. math., Volume 13 (1971), pp. 1-89 | MR | Zbl | DOI

Saito, Shuji Purity of reciprocity sheaves (preprint arXiv:1704.02442 ) | MR

Stacks Project (2014) ( http://stacks.math.columbia.edu )

Suslin, Andrei; Voevodsky, Vladimir Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (NATO Sci. Ser. C Math. Phys. Sci.), Volume 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117-189 | MR | Zbl

Voevodsky, Vladimir Homology of schemes, Selecta Math. (N.S.), Volume 2 (1996), pp. 111-153 | MR | Zbl | DOI

Zariski, Oscar Analytical irreducibility of normal varieties, Ann. of Math., Volume 49 (1948), pp. 352-361 | MR | Zbl | DOI

Zariski, Oscar; Samuel, Pierre Commutative algebra. Vol. II, Springer, New York-Heidelberg, 1975, 414 pages (reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29) | MR | Zbl

Cité par Sources :