Jet schemes of normal toric surfaces
[Espaces de jets des surfaces toriques normales]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 237-266

For m,m1, we determine the irreducible components of the m-th jet scheme of a normal toric surface S. We give formulas for the number of these components and their dimensions. This permits to determine the log canonical threshold of a toric surface embedded in an affine space. When m varies, these components give rise to projective systems, to which we associate a weighted oriented graph. We prove that, among toric surfaces, the data of this graph is equivalent to the data of the analytical type of S. Besides, we classify these irreducible components by an integer invariant that we call index of speciality. We prove that for m large enough, the set of components with index of speciality 1, is in 1-1 with the set of exceptional divisors that appear on the minimal resolution of S.

Pour m, m1, nous déterminons les composantes irréductibles des espaces de m-jets d’une surface torique normales S. Nous donnons des formules pour le nombre de ces composantes et pour leurs dimensions. Ceci permet de déterminer le seuil log-canonique de la surface S plongée dans un espace affine. Quand m varie, ces composantes donnent lieu à des systèmes projectifs, auxquels nous associons un graphe orienté et pondéré. Nous démontrons que, parmi les surfaces toriques, la donnée de ce graphe est équivalente à la donnée du type analytique de S. De plus, nous classifions ces composantes irréductibles via un invariant qu’on appelle indice de spécialité. Nous démontrons que pour m assez large, l’ensemble des composantes avec un indice de spécialité égal à 1, est en correspondance bijective avec l’ensemble des diviseurs exceptionnels qui apparaissent sur la résolution minimale des singularités de S.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2736
Classification : 14B05, 14E18, 14M25
Keywords: Espaces de jets, surfaces toriques, résolution des singularités, problème de Nash.
Mots-clés : Jets schemes, toric surfaces, resolution of singularities, Nash problem.

Mourtada, Hussein 1

1 Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Diderot, Paris 75013, France.
@article{BSMF_2017__145_2_237_0,
     author = {Mourtada, Hussein},
     title = {Jet schemes of normal toric surfaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {237--266},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {2},
     doi = {10.24033/bsmf.2736},
     mrnumber = {3749785},
     zbl = {1401.14024},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2736/}
}
TY  - JOUR
AU  - Mourtada, Hussein
TI  - Jet schemes of normal toric surfaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 237
EP  - 266
VL  - 145
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2736/
DO  - 10.24033/bsmf.2736
LA  - en
ID  - BSMF_2017__145_2_237_0
ER  - 
%0 Journal Article
%A Mourtada, Hussein
%T Jet schemes of normal toric surfaces
%J Bulletin de la Société Mathématique de France
%D 2017
%P 237-266
%V 145
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2736/
%R 10.24033/bsmf.2736
%G en
%F BSMF_2017__145_2_237_0
Mourtada, Hussein. Jet schemes of normal toric surfaces. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 237-266. doi: 10.24033/bsmf.2736

Bouvier, Catherine; Gonzalez-Sprinberg, Gérard Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tohoku Math. J., Volume 47 (1995), pp. 125-149 | MR | Zbl | DOI

Cobo, H.; Mourtada, Hussein Jet schemes of quasi-ordinary surface singularities (preprint arXiv:1701.00674 ) | MR

de Fernex, Tommaso; Ein, Lawrence; Ishii, Shihoko Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci., Volume 44 (2008), pp. 425-448 | MR | Zbl | DOI

Denef, Jan; Loeser, François On some rational generating series occurring in arithmetic geometry, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 509-526 | MR | Zbl

Denef, Jan; Loeser, François Germs of arcs on singular algebraic varieties and motivic integration, Invent. math., Volume 135 (1999), pp. 201-232 | MR | Zbl | DOI

Docampo, Roi Arcs on determinantal varieties, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 2241-2269 | MR | Zbl | DOI

Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea Contact loci in arc spaces, Compos. Math., Volume 140 (2004), pp. 1229-1244 | MR | Zbl | DOI

Ein, Lawrence; Mustaţă, Mircea Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | MR | Zbl | DOI

Goward, Russell A. Jr.; Smith, Karen E. The jet scheme of a monomial scheme, Comm. Algebra, Volume 34 (2006), pp. 1591-1598 | MR | Zbl | DOI

Ishii, Shihoko; Kollár, János The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003), pp. 601-620 | MR | Zbl | DOI

Ishii, Shihoko The arc space of a toric variety, J. Algebra, Volume 278 (2004), pp. 666-683 | MR | Zbl | DOI

Kempf, G.; Knudsen, Finn Faye; Mumford, D.; Saint-Donat, B. Toroidal embeddings. I, Lecture Notes in Math., 339, Springer, Berlin-New York, 1973, 209 pages | MR | Zbl | DOI

Kontsevich, M. Lecture at Orsay (1995)

Lejeune-Jalabert, Monique Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces 1976/77, exp. no 18 (Springer Lecture Notes in Math.), Volume 777 (1980), pp. 304-336 | Zbl | Numdam

Lejeune-Jalabert, Monique; Mourtada, Hussein; Reguera, Ana Jet schemes and minimal embedded desingularization of plane branches, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, Volume 107 (2013), pp. 145-157 | MR | Zbl | DOI

Lejeune-Jalabert, Monique; Reguera, Ana J. The Denef-Loeser series for toric surface singularities, Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001), Volume 19 (2003), pp. 581-612 | MR | Zbl | DOI

Mourtada, Hussein Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2313-2336 | MR | Zbl | Numdam | DOI

Mourtada, Hussein Jet schemes of toric surfaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 563-566 | MR | Zbl | DOI

Mourtada, Hussein Jet schemes and generating sequences of divisorial valuations in dimension two, Michigan Math. J., Volume 66 (2017), pp. 155-174 | MR | Zbl | DOI

Mustaţă, Mircea Jet schemes of locally complete intersection canonical singularities, Invent. math., Volume 145 (2001), pp. 397-424 | MR | Zbl | DOI

Mustaţă, Mircea Singularities of pairs via jet schemes, J. Amer. Math. Soc., Volume 15 (2002), pp. 599-615 | MR | Zbl | DOI

Nicaise, Johannes Motivic generating series for toric surface singularities, Math. Proc. Cambridge Philos. Soc., Volume 138 (2005), pp. 383-400 | MR | Zbl | DOI

Oda, Tadao Convex bodies and algebraic geometry, Ergebn. Math. Grenzg., 15, Springer, Berlin, 1988, 212 pages | MR | Zbl

Riemenschneider, Oswald Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel), Volume 37 (1981), pp. 406-417 | MR | Zbl | DOI

Stevens, Jan Deformations of singularities, Lecture Notes in Math., 1811, Springer, Berlin, 2003, 157 pages | MR | Zbl | DOI

Teissier, Bernard Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2014, pp. 474-565 | MR | Zbl | DOI

Vojta, Paul Jets via Hasse-Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Ed. Norm., Pisa, 2007, pp. 335-361 | MR | Zbl

Cité par Sources :