[Espaces de jets des surfaces toriques normales]
For , we determine the irreducible components of the jet scheme of a normal toric surface We give formulas for the number of these components and their dimensions. This permits to determine the log canonical threshold of a toric surface embedded in an affine space. When varies, these components give rise to projective systems, to which we associate a weighted oriented graph. We prove that, among toric surfaces, the data of this graph is equivalent to the data of the analytical type of Besides, we classify these irreducible components by an integer invariant that we call index of speciality. We prove that for large enough, the set of components with index of speciality , is in with the set of exceptional divisors that appear on the minimal resolution of
Pour , , nous déterminons les composantes irréductibles des espaces de -jets d’une surface torique normales S. Nous donnons des formules pour le nombre de ces composantes et pour leurs dimensions. Ceci permet de déterminer le seuil log-canonique de la surface plongée dans un espace affine. Quand varie, ces composantes donnent lieu à des systèmes projectifs, auxquels nous associons un graphe orienté et pondéré. Nous démontrons que, parmi les surfaces toriques, la donnée de ce graphe est équivalente à la donnée du type analytique de De plus, nous classifions ces composantes irréductibles via un invariant qu’on appelle indice de spécialité. Nous démontrons que pour assez large, l’ensemble des composantes avec un indice de spécialité égal à 1, est en correspondance bijective avec l’ensemble des diviseurs exceptionnels qui apparaissent sur la résolution minimale des singularités de
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2736
Keywords: Espaces de jets, surfaces toriques, résolution des singularités, problème de Nash.
Mots-clés : Jets schemes, toric surfaces, resolution of singularities, Nash problem.
Mourtada, Hussein 1
@article{BSMF_2017__145_2_237_0,
author = {Mourtada, Hussein},
title = {Jet schemes of normal toric surfaces},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {237--266},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {2},
doi = {10.24033/bsmf.2736},
mrnumber = {3749785},
zbl = {1401.14024},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2736/}
}
TY - JOUR AU - Mourtada, Hussein TI - Jet schemes of normal toric surfaces JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 237 EP - 266 VL - 145 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2736/ DO - 10.24033/bsmf.2736 LA - en ID - BSMF_2017__145_2_237_0 ER -
%0 Journal Article %A Mourtada, Hussein %T Jet schemes of normal toric surfaces %J Bulletin de la Société Mathématique de France %D 2017 %P 237-266 %V 145 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2736/ %R 10.24033/bsmf.2736 %G en %F BSMF_2017__145_2_237_0
Mourtada, Hussein. Jet schemes of normal toric surfaces. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 237-266. doi: 10.24033/bsmf.2736
Système générateur minimal, diviseurs essentiels et -désingularisations de variétés toriques, Tohoku Math. J., Volume 47 (1995), pp. 125-149 | MR | Zbl | DOI
Jet schemes of quasi-ordinary surface singularities (preprint arXiv:1701.00674 ) | MR
Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci., Volume 44 (2008), pp. 425-448 | MR | Zbl | DOI
On some rational generating series occurring in arithmetic geometry, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 509-526 | MR | Zbl
Germs of arcs on singular algebraic varieties and motivic integration, Invent. math., Volume 135 (1999), pp. 201-232 | MR | Zbl | DOI
Arcs on determinantal varieties, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 2241-2269 | MR | Zbl | DOI
Contact loci in arc spaces, Compos. Math., Volume 140 (2004), pp. 1229-1244 | MR | Zbl | DOI
Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | MR | Zbl | DOI
The jet scheme of a monomial scheme, Comm. Algebra, Volume 34 (2006), pp. 1591-1598 | MR | Zbl | DOI
The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003), pp. 601-620 | MR | Zbl | DOI
The arc space of a toric variety, J. Algebra, Volume 278 (2004), pp. 666-683 | MR | Zbl | DOI
Toroidal embeddings. I, Lecture Notes in Math., 339, Springer, Berlin-New York, 1973, 209 pages | MR | Zbl | DOI
Lecture at Orsay (1995)
Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces 1976/77, exp. no 18 (Springer Lecture Notes in Math.), Volume 777 (1980), pp. 304-336 | Zbl | Numdam
Jet schemes and minimal embedded desingularization of plane branches, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, Volume 107 (2013), pp. 145-157 | MR | Zbl | DOI
The Denef-Loeser series for toric surface singularities, Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001), Volume 19 (2003), pp. 581-612 | MR | Zbl | DOI
Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2313-2336 | MR | Zbl | Numdam | DOI
Jet schemes of toric surfaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 563-566 | MR | Zbl | DOI
Jet schemes and generating sequences of divisorial valuations in dimension two, Michigan Math. J., Volume 66 (2017), pp. 155-174 | MR | Zbl | DOI
Jet schemes of locally complete intersection canonical singularities, Invent. math., Volume 145 (2001), pp. 397-424 | MR | Zbl | DOI
Singularities of pairs via jet schemes, J. Amer. Math. Soc., Volume 15 (2002), pp. 599-615 | MR | Zbl | DOI
Motivic generating series for toric surface singularities, Math. Proc. Cambridge Philos. Soc., Volume 138 (2005), pp. 383-400 | MR | Zbl | DOI
Convex bodies and algebraic geometry, Ergebn. Math. Grenzg., 15, Springer, Berlin, 1988, 212 pages | MR | Zbl
Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel), Volume 37 (1981), pp. 406-417 | MR | Zbl | DOI
Deformations of singularities, Lecture Notes in Math., 1811, Springer, Berlin, 2003, 157 pages | MR | Zbl | DOI
Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2014, pp. 474-565 | MR | Zbl | DOI
Jets via Hasse-Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Ed. Norm., Pisa, 2007, pp. 335-361 | MR | Zbl
Cité par Sources :






