Complexes of groups and geometric small cancelation over graphs of groups
[Complexes de groupes et petite simplification géométrique sur les graphes de groupes]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 193-223

We explain and generalize a construction due to Gromov to realize geometric small cancelation groups over graphs of groups as fundamental groups of non-positively curved 2-dimensional complexes of groups. We then give conditions so that the hyperbolicity and some finiteness properties of the small cancelation quotient can be deduced from analogous properties for the local groups of the initial graph of groups.

Nous généralisons une construction de Gromov afin de réaliser certains groupes à petite simplification géométrique sur un graphe de groupes comme groupes fondamentaux de complexes de groupes de dimension 2 à courbure négative ou nulle. Nous donnons ensuite des conditions pour que l’hyperbolicité et certaines propriétés de finitude de tels groupes se déduisent des propriétés analogues pour les groupes locaux du graphe de groupes initial.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2734
Classification : 20F65, 20E08, 57M07
Keywords: Geometric small cancelation, complexes of groups, hyperbolic groups, classifying spaces.
Mots-clés : Petite simplification géométrique, complexes de groupes, groupes hyperboliques, espaces classifiants.

Martin, Alexandre 1

1 Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom.
@article{BSMF_2017__145_2_193_0,
     author = {Martin, Alexandre},
     title = {Complexes of groups and geometric small cancelation over graphs of groups},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {193--223},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {2},
     doi = {10.24033/bsmf.2734},
     mrnumber = {3749783},
     zbl = {1446.20066},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2734/}
}
TY  - JOUR
AU  - Martin, Alexandre
TI  - Complexes of groups and geometric small cancelation over graphs of groups
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 193
EP  - 223
VL  - 145
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2734/
DO  - 10.24033/bsmf.2734
LA  - en
ID  - BSMF_2017__145_2_193_0
ER  - 
%0 Journal Article
%A Martin, Alexandre
%T Complexes of groups and geometric small cancelation over graphs of groups
%J Bulletin de la Société Mathématique de France
%D 2017
%P 193-223
%V 145
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2734/
%R 10.24033/bsmf.2734
%G en
%F BSMF_2017__145_2_193_0
Martin, Alexandre. Complexes of groups and geometric small cancelation over graphs of groups. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 2, pp. 193-223. doi: 10.24033/bsmf.2734

Arzhantseva, G.; Druţu, C. Geometry of infinitely presented small cancellation groups, rapid decay and quasi-homomorphisms | arXiv

Arzhantseva, G.; Osajda, D. Infinitely presented small cancellation groups have Haagerup property | arXiv

Bestvina, M.; Feighn, M. A combination theorem for negatively curved groups, J. Differential Geom., Volume 35 (1992), pp. 85-101 http://projecteuclid.org/... | MR | Zbl

Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature, Grundl. math. Wiss., 319, Springer, 1999, 643 pages | MR | Zbl | DOI

Bridson, M. R. Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 373-463 | MR | Zbl

Champetier, C. Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math., Volume 3 (1994), pp. 161-221 | Numdam | MR | Zbl | DOI

Corson, J. M. Complexes of groups, Proc. London Math. Soc., Volume 65 (1992), pp. 199-224 | MR | Zbl | DOI

Coulon, R. Asphericity and small cancellation theory for rotation families of groups, Groups Geom. Dyn., Volume 5 (2011), pp. 729-765 | MR | Zbl | DOI

Delzant, T. Sous-groupes distingués et quotients des groupes hyperboliques, Duke Math. J., Volume 83 (1996), pp. 661-682 | MR | Zbl | DOI

Delzant, T.; Gromov, M. Courbure mésoscopique et théorie de la toute petite simplification, J. Topol., Volume 1 (2008), pp. 804-836 | MR | Zbl | DOI

Dahmani, F.; Guirardel, V.; Osin, D. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces | arXiv

Gromov, M. CAT (κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 280 (2001), p. 100-140, 299–300 | MR | Zbl | DOI

Gromov, M. Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003), pp. 73-146 | MR | Zbl | DOI

Haefliger, A. Complexes of groups and orbihedra, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 504-540 | MR | Zbl

Haefliger, A. Extension of complexes of groups, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 275-311 | Numdam | MR | Zbl | DOI

Lyndon, R. C.; Schupp, P. E. Combinatorial group theory, Classics in Mathematics, Springer, 2001, 339 pages | MR | Zbl | DOI

Martin, A. Combination of classifying spaces for proper actions | arXiv

Martin, A. Non-positively curved complexes of groups and boundaries, Geom. Topol., Volume 18 (2014), pp. 31-102 | MR | Zbl | DOI

McCammond, J. P.; Wise, D. T. Fans and ladders in small cancellation theory, Proc. London Math. Soc., Volume 84 (2002), pp. 599-644 | MR | Zbl | DOI

Olʼshanskiĭ, A. Y. Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), 70, Kluwer Academic Publishers Group, Dordrecht, 1991, 505 pages | MR | Zbl | DOI

Olʼshanskiĭ, A. Y. On residualing homomorphisms and G-subgroups of hyperbolic groups, Internat. J. Algebra Comput., Volume 3 (1993), pp. 365-409 | MR | Zbl | DOI

Sageev, M. Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc., Volume 71 (1995), pp. 585-617 | MR | Zbl | DOI

Serre, J-P. Arbres, amalgames, SL 2 , Astérisque, 46, Soc. Math. France, 1977, 189 pp. (1 plate) pages | Zbl | Numdam | MR

Stallings, J. R. Non-positively curved triangles of groups, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 491-503 | MR | Zbl

Wise, D. T. Cubulating small cancellation groups, Geom. Funct. Anal., Volume 14 (2004), pp. 150-214 | MR | Zbl | DOI

Cité par Sources :