Quadratic operator pencils associated with the conservative Camassa-Holm flow
[Pinceaux quadratiques d’opérateurs associés au flot Camassa-Holm conservateur]
Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 1, pp. 47-95

We discuss direct and inverse spectral theory for a Sturm-Liouville type problem with a quadratic dependence on the eigenvalue parameter,

- f + 1 4 f = z ω f + z 2 υ f ,

which arises as the isospectral problem for the conservative Camassa-Holm flow. In order to be able to treat rather irregular coefficients (that is, when ω is a real-valued Borel measure on  and υ is a non-negative Borel measure on ), we employ a novel approach to study this spectral problem. In particular, we provide basic self-adjointness results for realizations in suitable Hilbert spaces, develop (singular) Weyl-Titchmarsh theory and prove several basic inverse uniqueness theorems for this spectral problem.

Nous discutons la théorie spectrale directe et inverse pour un problème tapez Sturm-Liouville avec une dépendance quadratique du paramètre valeur propre,

- f + 1 4 f = z ω f + z 2 υ f ,

qui se pose le problème isospectral pour le flot Camassa-Holm conservateur. Afin d’être capable de traiter des coefficients plutôt irréguliers (qui est, quand ω est une mesure de Borel de valeur réelle sur et υ est une mesure de Borel non-négative sur ), nous employons une nouvelle approche pour étudier ce problème spectral. En particulier, nous fournissons des résultats auto-adjointness de base pour des réalisations dans des espaces de Hilbert appropriés, développons théorie Weyl-Titchmarsh (singulier) et prouvons plusieurs théorèmes de base d’unicité inverse pour ce problème spectral.

Reçu le :
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2731
Classification : 34L05, 34B07, 34B20, 37K15
Keywords: Sturm-Liouville problems, quadratic operator pencils, (inverse) spectral theory.
Mots-clés : Problème de Sturm-Liouville, pinceaux quadratiques d’opérateurs, théorie spectrale (inverse).

Eckhardt, Jonathan 1 ; Kostenko, Aleksey 2

1 School of Computer Science & Informatics, Cardiff University, Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, Wales, UK
2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
@article{BSMF_2017__145_1_47_0,
     author = {Eckhardt, Jonathan and Kostenko, Aleksey},
     title = {Quadratic operator pencils associated with the~conservative {Camassa-Holm} flow},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {47--95},
     year = {2017},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {145},
     number = {1},
     doi = {10.24033/bsmf.2731},
     mrnumber = {3636751},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2731/}
}
TY  - JOUR
AU  - Eckhardt, Jonathan
AU  - Kostenko, Aleksey
TI  - Quadratic operator pencils associated with the conservative Camassa-Holm flow
JO  - Bulletin de la Société Mathématique de France
PY  - 2017
SP  - 47
EP  - 95
VL  - 145
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2731/
DO  - 10.24033/bsmf.2731
LA  - en
ID  - BSMF_2017__145_1_47_0
ER  - 
%0 Journal Article
%A Eckhardt, Jonathan
%A Kostenko, Aleksey
%T Quadratic operator pencils associated with the conservative Camassa-Holm flow
%J Bulletin de la Société Mathématique de France
%D 2017
%P 47-95
%V 145
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2731/
%R 10.24033/bsmf.2731
%G en
%F BSMF_2017__145_1_47_0
Eckhardt, Jonathan; Kostenko, Aleksey. Quadratic operator pencils associated with the conservative Camassa-Holm flow. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 1, pp. 47-95. doi: 10.24033/bsmf.2731

Aronszajn, N. Theory of reproducing kernels, Trans. Amer. Math. Soc., Volume 68 (1950), pp. 337-404 | MR | Zbl | DOI

Atkinson, F. V. Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York-London, 1964, 570 pages | MR | Zbl

Bennewitz, Christer; Brown, B. M.; Weikard, Rudi Inverse spectral and scattering theory for the half-line left-definite Sturm-Liouville problem, SIAM J. Math. Anal., Volume 40 (2008/09), pp. 2105-2131 | MR | Zbl | DOI

Bennewitz, Christer; Brown, B. M.; Weikard, Rudi Scattering and inverse scattering for a left-definite Sturm-Liouville problem, J. Differential Equations, Volume 253 (2012), pp. 2380-2419 | DOI | MR

Bressan, Alberto; Constantin, Adrian Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 215-239 | MR | Zbl | DOI

Bennewitz, Christer On the spectral problem associated with the Camassa-Holm equation, J. Nonlinear Math. Phys., Volume 11 (2004), pp. 422-434 | MR | Zbl | DOI

Bennewitz, Christer Spectral asymptotics for Sturm-Liouville equations, Proc. London Math. Soc., Volume 59 (1989), pp. 294-338 | MR | Zbl | DOI

Boutet de Monvel, Anne; Kostenko, Aleksey; Shepelsky, Dmitry; Teschl, Gerald Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., Volume 41 (2009), pp. 1559-1588 | MR | Zbl | DOI

Beals, Richard; Sattinger, David H.; Szmigielski, Jacek Multipeakons and the classical moment problem, Adv. Math., Volume 154 (2000), pp. 229-257 | MR | Zbl | DOI

Constantin, Adrian; Escher, Joachim Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 26 (1998), pp. 303-328 | Numdam | MR | Zbl

Constantin, Adrian; Gerdjikov, Vladimir S.; Ivanov, Rossen I. Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, Volume 22 (2006), pp. 2197-2207 | MR | Zbl | DOI

Camassa, Roberto; Holm, Darryl D. An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993), pp. 1661-1664 | MR | Zbl | DOI

Chen, Ming; Liu, Si-Qi; Zhang, Youjin A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., Volume 75 (2006), pp. 1-15 | MR | Zbl | DOI

Constantin, Adrian; Molinet, Luc Global weak solutions for a shallow water equation, Comm. Math. Phys., Volume 211 (2000), pp. 45-61 | MR | Zbl | DOI

Constantin, Adrian On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 457 (2001), pp. 953-970 | MR | Zbl | DOI

Constantin, Adrian; Strauss, Walter A. Stability of peakons, Comm. Pure Appl. Math., Volume 53 (2000), pp. 603-610 | MR | Zbl | DOI

de Branges, Louis Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968, 326 pages | MR | Zbl

Dym, Harry; McKean, Henry P. Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, 31, Academic Press, New York-London, 1976, 335 pages | MR | Zbl

Derkach, V. A.; Malamud, M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., Volume 95 (1991), pp. 1-95 | MR | Zbl | DOI

Dym, Harry An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type, Advances in Math., Volume 5 (1970), pp. 395-471 | MR | Zbl | DOI

Eckhardt, Jonathan Direct and inverse spectral theory of singular left-definite Sturm-Liouville operators, J. Differential Equations, Volume 253 (2012), pp. 604-634 | MR | Zbl | DOI

Eckhardt, Jonathan; Kostenko, Aleksey An isospectral problem for global conservative multi-peakon solutions of the Camassa-Holm equation, Comm. Math. Phys., Volume 329 (2014), pp. 893-918 | MR | Zbl | DOI

Eckhardt, Jonathan; Teschl, Gerald On the isospectral problem of the dispersionless Camassa-Holm equation, Adv. Math., Volume 235 (2013), pp. 469-495 | MR | Zbl | DOI

Eckhardt, Jonathan; Teschl, Gerald Sturm-Liouville operators with measure-valued coefficients, J. Anal. Math., Volume 120 (2013), pp. 151-224 | MR | Zbl | DOI

Fulton, Charles; Langer, Heinz; Luger, Annemarie Mark Krein’s method of directing functionals and singular potentials, Math. Nachr., Volume 285 (2012), pp. 1791-1798 | MR | Zbl | DOI

Fulton, Charles Titchmarsh-Weyl m-functions for second-order Sturm-Liouville problems with two singular endpoints, Math. Nachr., Volume 281 (2008), pp. 1418-1475 | MR | Zbl | DOI

Grunert, Katrin; Holden, Helge; Raynaud, Xavier Global solutions for the two-component Camassa-Holm system, Comm. Partial Differential Equations, Volume 37 (2012), pp. 2245-2271 | MR | Zbl | DOI

Gesztesy, Fritz; Weikard, Rudi Some remarks on the spectral problem underlying the Camassa-Holm hierarchy, Operator theory in harmonic and non-commutative analysis (Oper. Theory Adv. Appl.), Volume 240, Birkhäuser, 2014, pp. 137-188 | DOI | MR

Gesztesy, Fritz; Zinchenko, Maxim On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr., Volume 279 (2006), pp. 1041-1082 | MR | Zbl | DOI

Holm, Darryl D.; Ivanov, Rossen I. Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, Volume 27 (2011), p. 045013 | MR | Zbl | DOI

Hryniv, Rostyslav; Pronska, Nataliya Inverse spectral problems for energy-dependent Sturm-Liouville equations, Inverse Problems, Volume 28 (2012), p. 085008 | MR | Zbl | DOI

Holden, Helge; Raynaud, Xavier Global conservative solutions of the Camassa-Holm equation—a Lagrangian point of view, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1511-1549 | MR | Zbl | DOI

Hewitt, Edwin; Stromberg, Karl Real and abstract analysis, Graduate Texts in Math., 25, Springer, New York-Heidelberg, 1975, 476 pages | MR | Zbl

Jaulent, M.; Jean, C. The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. I, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 25 (1976), pp. 105-118 | MR | Zbl | Numdam

Kac, I. S. The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end, Amer. Math. Soc. Transl., Volume 62 (1967), pp. 204-262 | Zbl | MR

Kats, I. S. On the nature of the de Branges Hamiltonian, Ukraïn. Mat. Zh., Volume 59 (2007), pp. 658-678 | MR | Zbl | DOI

Kaup, D. J. A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., Volume 54 (1975), pp. 396-408 | MR | Zbl | DOI

Kac, I. S.; Krein, M. G. On the spectral functions of the string, Amer. Math. Soc. Transl., Volume 103 (1974), pp. 19-102 | Zbl

Kreĭn, M. G.; Langer, Heinz On some extension problems which are closely connected with the theory of Hermitian operators in a space Πκ. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part I, Beiträge Anal., Volume 14 (1979), p. 25-40 (loose errata) | MR | Zbl

Kreĭn, M. G.; Langer, Heinz On some extension problems which are closely connected with the theory of Hermitian operators in a space Πκ. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part II, Beiträge Anal., Volume 15 (1980), pp. 27-45 | MR | Zbl

Kodaira, Kunihiko The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices, Amer. J. Math., Volume 71 (1949), pp. 921-945 | MR | Zbl | DOI

Kotani, Shinichi A remark to the ordering theorem of L. de Branges, J. Math. Kyoto Univ., Volume 16 (1976), pp. 665-674 | MR | Zbl

Kostenko, Aleksey; Sakhnovich, Alexander; Teschl, Gerald Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not., Volume 2012 (2012), pp. 1699-1747 | MR | Zbl | DOI

Langer, Heinz Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 2 (1976), pp. 269-301 | MR | Zbl | DOI

Levin, B. Ya. Lectures on entire functions, Translations of Mathematical Monographs, 150, Amer. Math. Soc., Providence, RI, 1996, 248 pages | MR | Zbl | DOI

Langer, Heinz; Winkler, Henrik Direct and inverse spectral problems for generalized strings, Integral Equations Operator Theory, Volume 30 (1998), pp. 409-431 | MR | Zbl | DOI

McKean, Henry P. Fredholm determinants and the Camassa-Holm hierarchy, Comm. Pure Appl. Math., Volume 56 (2003), pp. 638-680 | MR | Zbl | DOI

McKean, Henry P. Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., Volume 57 (2004), pp. 416-418 | MR | Zbl | DOI

Persson, Jan Fundamental theorems for linear measure differential equations, Math. Scand., Volume 62 (1988), pp. 19-43 | MR | Zbl | DOI

Remling, Christian Schrödinger operators and de Branges spaces, J. Funct. Anal., Volume 196 (2002), pp. 323-394 | MR | Zbl | DOI

Rosenblum, Marvin; Rovnyak, James Topics in Hardy classes and univalent functions, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, 1994, 250 pages | MR | Zbl | DOI

Sattinger, David H.; Szmigielski, Jacek A Riemann-Hilbert problem for an energy dependent Schrödinger operator, Inverse Problems, Volume 12 (1996), pp. 1003-1025 | MR | Zbl | DOI

Tretter, Christiane Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008, 264 pages | MR | Zbl | DOI

Cité par Sources :