[Pinceaux quadratiques d’opérateurs associés au flot Camassa-Holm conservateur]
We discuss direct and inverse spectral theory for a Sturm-Liouville type problem with a quadratic dependence on the eigenvalue parameter,
which arises as the isospectral problem for the conservative Camassa-Holm flow. In order to be able to treat rather irregular coefficients (that is, when is a real-valued Borel measure on and is a non-negative Borel measure on ), we employ a novel approach to study this spectral problem. In particular, we provide basic self-adjointness results for realizations in suitable Hilbert spaces, develop (singular) Weyl-Titchmarsh theory and prove several basic inverse uniqueness theorems for this spectral problem.
Nous discutons la théorie spectrale directe et inverse pour un problème tapez Sturm-Liouville avec une dépendance quadratique du paramètre valeur propre,
qui se pose le problème isospectral pour le flot Camassa-Holm conservateur. Afin d’être capable de traiter des coefficients plutôt irréguliers (qui est, quand est une mesure de Borel de valeur réelle sur et est une mesure de Borel non-négative sur ), nous employons une nouvelle approche pour étudier ce problème spectral. En particulier, nous fournissons des résultats auto-adjointness de base pour des réalisations dans des espaces de Hilbert appropriés, développons théorie Weyl-Titchmarsh (singulier) et prouvons plusieurs théorèmes de base d’unicité inverse pour ce problème spectral.
Accepté le :
Publié le :
DOI : 10.24033/bsmf.2731
Keywords: Sturm-Liouville problems, quadratic operator pencils, (inverse) spectral theory.
Mots-clés : Problème de Sturm-Liouville, pinceaux quadratiques dopérateurs, théorie spectrale (inverse).
Eckhardt, Jonathan 1 ; Kostenko, Aleksey 2
@article{BSMF_2017__145_1_47_0,
author = {Eckhardt, Jonathan and Kostenko, Aleksey},
title = {Quadratic operator pencils associated with the~conservative {Camassa-Holm} flow},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {47--95},
year = {2017},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {145},
number = {1},
doi = {10.24033/bsmf.2731},
mrnumber = {3636751},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2731/}
}
TY - JOUR AU - Eckhardt, Jonathan AU - Kostenko, Aleksey TI - Quadratic operator pencils associated with the conservative Camassa-Holm flow JO - Bulletin de la Société Mathématique de France PY - 2017 SP - 47 EP - 95 VL - 145 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2731/ DO - 10.24033/bsmf.2731 LA - en ID - BSMF_2017__145_1_47_0 ER -
%0 Journal Article %A Eckhardt, Jonathan %A Kostenko, Aleksey %T Quadratic operator pencils associated with the conservative Camassa-Holm flow %J Bulletin de la Société Mathématique de France %D 2017 %P 47-95 %V 145 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2731/ %R 10.24033/bsmf.2731 %G en %F BSMF_2017__145_1_47_0
Eckhardt, Jonathan; Kostenko, Aleksey. Quadratic operator pencils associated with the conservative Camassa-Holm flow. Bulletin de la Société Mathématique de France, Tome 145 (2017) no. 1, pp. 47-95. doi: 10.24033/bsmf.2731
Theory of reproducing kernels, Trans. Amer. Math. Soc., Volume 68 (1950), pp. 337-404 | MR | Zbl | DOI
Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York-London, 1964, 570 pages | MR | Zbl
Inverse spectral and scattering theory for the half-line left-definite Sturm-Liouville problem, SIAM J. Math. Anal., Volume 40 (2008/09), pp. 2105-2131 | MR | Zbl | DOI
Scattering and inverse scattering for a left-definite Sturm-Liouville problem, J. Differential Equations, Volume 253 (2012), pp. 2380-2419 | DOI | MR
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 215-239 | MR | Zbl | DOI
On the spectral problem associated with the Camassa-Holm equation, J. Nonlinear Math. Phys., Volume 11 (2004), pp. 422-434 | MR | Zbl | DOI
Spectral asymptotics for Sturm-Liouville equations, Proc. London Math. Soc., Volume 59 (1989), pp. 294-338 | MR | Zbl | DOI
Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., Volume 41 (2009), pp. 1559-1588 | MR | Zbl | DOI
Multipeakons and the classical moment problem, Adv. Math., Volume 154 (2000), pp. 229-257 | MR | Zbl | DOI
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 26 (1998), pp. 303-328 | Numdam | MR | Zbl
Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, Volume 22 (2006), pp. 2197-2207 | MR | Zbl | DOI
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993), pp. 1661-1664 | MR | Zbl | DOI
A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., Volume 75 (2006), pp. 1-15 | MR | Zbl | DOI
Global weak solutions for a shallow water equation, Comm. Math. Phys., Volume 211 (2000), pp. 45-61 | MR | Zbl | DOI
On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 457 (2001), pp. 953-970 | MR | Zbl | DOI
Stability of peakons, Comm. Pure Appl. Math., Volume 53 (2000), pp. 603-610 | MR | Zbl | DOI
Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968, 326 pages | MR | Zbl
Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, 31, Academic Press, New York-London, 1976, 335 pages | MR | Zbl
Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., Volume 95 (1991), pp. 1-95 | MR | Zbl | DOI
An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type, Advances in Math., Volume 5 (1970), pp. 395-471 | MR | Zbl | DOI
Direct and inverse spectral theory of singular left-definite Sturm-Liouville operators, J. Differential Equations, Volume 253 (2012), pp. 604-634 | MR | Zbl | DOI
An isospectral problem for global conservative multi-peakon solutions of the Camassa-Holm equation, Comm. Math. Phys., Volume 329 (2014), pp. 893-918 | MR | Zbl | DOI
On the isospectral problem of the dispersionless Camassa-Holm equation, Adv. Math., Volume 235 (2013), pp. 469-495 | MR | Zbl | DOI
Sturm-Liouville operators with measure-valued coefficients, J. Anal. Math., Volume 120 (2013), pp. 151-224 | MR | Zbl | DOI
Mark Krein’s method of directing functionals and singular potentials, Math. Nachr., Volume 285 (2012), pp. 1791-1798 | MR | Zbl | DOI
Titchmarsh-Weyl -functions for second-order Sturm-Liouville problems with two singular endpoints, Math. Nachr., Volume 281 (2008), pp. 1418-1475 | MR | Zbl | DOI
Global solutions for the two-component Camassa-Holm system, Comm. Partial Differential Equations, Volume 37 (2012), pp. 2245-2271 | MR | Zbl | DOI
Some remarks on the spectral problem underlying the Camassa-Holm hierarchy, Operator theory in harmonic and non-commutative analysis (Oper. Theory Adv. Appl.), Volume 240, Birkhäuser, 2014, pp. 137-188 | DOI | MR
On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr., Volume 279 (2006), pp. 1041-1082 | MR | Zbl | DOI
Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, Volume 27 (2011), p. 045013 | MR | Zbl | DOI
Inverse spectral problems for energy-dependent Sturm-Liouville equations, Inverse Problems, Volume 28 (2012), p. 085008 | MR | Zbl | DOI
Global conservative solutions of the Camassa-Holm equation—a Lagrangian point of view, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1511-1549 | MR | Zbl | DOI
Real and abstract analysis, Graduate Texts in Math., 25, Springer, New York-Heidelberg, 1975, 476 pages | MR | Zbl
The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. I, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 25 (1976), pp. 105-118 | MR | Zbl | Numdam
The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end, Amer. Math. Soc. Transl., Volume 62 (1967), pp. 204-262 | Zbl | MR
On the nature of the de Branges Hamiltonian, Ukraïn. Mat. Zh., Volume 59 (2007), pp. 658-678 | MR | Zbl | DOI
A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., Volume 54 (1975), pp. 396-408 | MR | Zbl | DOI
On the spectral functions of the string, Amer. Math. Soc. Transl., Volume 103 (1974), pp. 19-102 | Zbl
On some extension problems which are closely connected with the theory of Hermitian operators in a space . III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part I, Beiträge Anal., Volume 14 (1979), p. 25-40 (loose errata) | MR | Zbl
On some extension problems which are closely connected with the theory of Hermitian operators in a space . III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part II, Beiträge Anal., Volume 15 (1980), pp. 27-45 | MR | Zbl
The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of -matrices, Amer. J. Math., Volume 71 (1949), pp. 921-945 | MR | Zbl | DOI
A remark to the ordering theorem of L. de Branges, J. Math. Kyoto Univ., Volume 16 (1976), pp. 665-674 | MR | Zbl
Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not., Volume 2012 (2012), pp. 1699-1747 | MR | Zbl | DOI
Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 2 (1976), pp. 269-301 | MR | Zbl | DOI
Lectures on entire functions, Translations of Mathematical Monographs, 150, Amer. Math. Soc., Providence, RI, 1996, 248 pages | MR | Zbl | DOI
Direct and inverse spectral problems for generalized strings, Integral Equations Operator Theory, Volume 30 (1998), pp. 409-431 | MR | Zbl | DOI
Fredholm determinants and the Camassa-Holm hierarchy, Comm. Pure Appl. Math., Volume 56 (2003), pp. 638-680 | MR | Zbl | DOI
Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., Volume 57 (2004), pp. 416-418 | MR | Zbl | DOI
Fundamental theorems for linear measure differential equations, Math. Scand., Volume 62 (1988), pp. 19-43 | MR | Zbl | DOI
Schrödinger operators and de Branges spaces, J. Funct. Anal., Volume 196 (2002), pp. 323-394 | MR | Zbl | DOI
Topics in Hardy classes and univalent functions, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, 1994, 250 pages | MR | Zbl | DOI
A Riemann-Hilbert problem for an energy dependent Schrödinger operator, Inverse Problems, Volume 12 (1996), pp. 1003-1025 | MR | Zbl | DOI
Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008, 264 pages | MR | Zbl | DOI
Cité par Sources :






