[Fibrés logarithmiques des arrangements de Weyl déformés de type ]
We consider deformations of the Weyl arrangement of type , which include the extended Shi and Catalan arrangements. These last ones are well-known to be free. We study their sheaves of logarithmic vector fields in all other cases, and show that they are Steiner bundles. Also, we determine explicitly their unstable lines. As a corollary, some counter-examples to the shift isomorphism problem are given.
Nous considérons des déformations des arrangements de Weyl de type , déformations dont les arrangements de Shi et de Catalan forment une classe particulière. Il est bien connu que ces derniers sont libres. Nous étudions les faisceaux de champs de vecteurs logarithmiques des autres arrangements déformés et montrons qu'ils sont des fibrés de Steiner. Nous déterminons explicitement leurs droites instables. Comme corollaire, des contres exemples du problème appelé « shift isomorphism » sont donnés.
DOI : 10.24033/bsmf.2726
Keywords: Line arrangements, logarithmic sheaves, Weyl arrangements, root systems.
Mots-clés : Arrangements de droites, faisceaux logarithmiques, arrangements de Weyl, système de racines
@article{BSMF_2016__144_4_745_0,
author = {Abe, Takuro and Faenzi, Daniele and Vall\`es, Jean},
title = {Logarithmic bundles of deformed {Weyl} arrangements of type $A_2$},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {745--761},
year = {2016},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {144},
number = {4},
doi = {10.24033/bsmf.2726},
mrnumber = {3562611},
zbl = {1358.52021},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2726/}
}
TY - JOUR AU - Abe, Takuro AU - Faenzi, Daniele AU - Vallès, Jean TI - Logarithmic bundles of deformed Weyl arrangements of type $A_2$ JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 745 EP - 761 VL - 144 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2726/ DO - 10.24033/bsmf.2726 LA - en ID - BSMF_2016__144_4_745_0 ER -
%0 Journal Article %A Abe, Takuro %A Faenzi, Daniele %A Vallès, Jean %T Logarithmic bundles of deformed Weyl arrangements of type $A_2$ %J Bulletin de la Société Mathématique de France %D 2016 %P 745-761 %V 144 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2726/ %R 10.24033/bsmf.2726 %G en %F BSMF_2016__144_4_745_0
Abe, Takuro; Faenzi, Daniele; Vallès, Jean. Logarithmic bundles of deformed Weyl arrangements of type $A_2$. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 4, pp. 745-761. doi: 10.24033/bsmf.2726
The stability of the family of -type arrangements, J. Math. Kyoto Univ., Volume 46 (2006), pp. 617-636 (ISSN: 0023-608X) | MR | Zbl
Extended Linial hyperplane arrangements for root systems and a conjecture of Postnikov and Stanley, J. Algebraic Combin., Volume 10 (1999), pp. 207-225 (ISSN: 0925-9899) | MR | Zbl | DOI
, Arrangements—Tokyo 1998 (Adv. Stud. Pure Math.), Volume 27, Kinokuniya, Tokyo, 2000, pp. 1-26 | MR | Zbl
Arrangements of hyperplanes and vector bundles on , Duke Math. J., Volume 71 (1993), pp. 633-664 (ISSN: 0012-7094) | MR | Zbl | DOI
Free arrangements and rhombic tilings, Discrete Comput. Geom., Volume 15 (1996), pp. 307-340 (ISSN: 0179-5376) | MR | Zbl | DOI
Hyperplane arrangements of Torelli type, Compos. Math., Volume 149 (2013), pp. 309-332 (ISSN: 0010-437X) | MR | Zbl | DOI
Logarithmic bundles and line arrangements, an approach via the standard construction, J. Lond. Math. Soc., Volume 90 (2014), pp. 675-694 (ISSN: 0024-6107) | MR | Zbl | DOI
Macaulay2, a software system for research in algebraic geometry ( http://www.math.uiuc.edu/Macaulay2/ )
Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, 1980, 389 pages (ISBN: 3-7643-3000-7) | MR | Zbl
Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Ser. A, Volume 91 (2000), pp. 544-597 (ISSN: 0097-3165) | MR | Zbl | DOI
Nombre maximal d'hyperplans instables pour un fibré de Steiner, Math. Z., Volume 233 (2000), pp. 507-514 (ISSN: 0025-5874) | MR | Zbl | DOI
On the exponents of 2-multiarrangements, Tokyo J. Math., Volume 30 (2007), pp. 99-116 (ISSN: 0387-3870) | MR | Zbl | DOI
Derivations of an effective divisor on the complex projective line, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4389-4403 (ISSN: 0002-9947) | MR | Zbl | DOI
Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. math., Volume 157 (2004), pp. 449-454 (ISSN: 0020-9910) | MR | Zbl | DOI
Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math., Volume 23 (2014), pp. 483-512 (ISSN: 0240-2963) | MR | Zbl | Numdam | DOI
Cité par Sources :






