Logarithmic bundles of deformed Weyl arrangements of type A2
[Fibrés logarithmiques des arrangements de Weyl déformés de type A2]
Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 4, pp. 745-761

We consider deformations of the Weyl arrangement of type A2, which include the extended Shi and Catalan arrangements. These last ones are well-known to be free. We study their sheaves of logarithmic vector fields in all other cases, and show that they are Steiner bundles. Also, we determine explicitly their unstable lines. As a corollary, some counter-examples to the shift isomorphism problem are given.

Nous considérons des déformations des arrangements de Weyl de type A2, déformations dont les arrangements de Shi et de Catalan forment une classe particulière. Il est bien connu que ces derniers sont libres. Nous étudions les faisceaux de champs de vecteurs logarithmiques des autres arrangements déformés et montrons qu'ils sont des fibrés de Steiner. Nous déterminons explicitement leurs droites instables. Comme corollaire, des contres exemples du problème appelé « shift isomorphism » sont donnés.

Publié le :
DOI : 10.24033/bsmf.2726
Classification : 52C35, 14F05, 32S22
Keywords: Line arrangements, logarithmic sheaves, Weyl arrangements, root systems.
Mots-clés : Arrangements de droites, faisceaux logarithmiques, arrangements de Weyl, système de racines
@article{BSMF_2016__144_4_745_0,
     author = {Abe, Takuro and Faenzi, Daniele and Vall\`es, Jean},
     title = {Logarithmic bundles of deformed {Weyl} arrangements of type $A_2$},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {745--761},
     year = {2016},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {144},
     number = {4},
     doi = {10.24033/bsmf.2726},
     mrnumber = {3562611},
     zbl = {1358.52021},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2726/}
}
TY  - JOUR
AU  - Abe, Takuro
AU  - Faenzi, Daniele
AU  - Vallès, Jean
TI  - Logarithmic bundles of deformed Weyl arrangements of type $A_2$
JO  - Bulletin de la Société Mathématique de France
PY  - 2016
SP  - 745
EP  - 761
VL  - 144
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2726/
DO  - 10.24033/bsmf.2726
LA  - en
ID  - BSMF_2016__144_4_745_0
ER  - 
%0 Journal Article
%A Abe, Takuro
%A Faenzi, Daniele
%A Vallès, Jean
%T Logarithmic bundles of deformed Weyl arrangements of type $A_2$
%J Bulletin de la Société Mathématique de France
%D 2016
%P 745-761
%V 144
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2726/
%R 10.24033/bsmf.2726
%G en
%F BSMF_2016__144_4_745_0
Abe, Takuro; Faenzi, Daniele; Vallès, Jean. Logarithmic bundles of deformed Weyl arrangements of type $A_2$. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 4, pp. 745-761. doi: 10.24033/bsmf.2726

Abe, Takuro The stability of the family of A2-type arrangements, J. Math. Kyoto Univ., Volume 46 (2006), pp. 617-636 (ISSN: 0023-608X) | MR | Zbl

Athanasiadis, Christos A. Extended Linial hyperplane arrangements for root systems and a conjecture of Postnikov and Stanley, J. Algebraic Combin., Volume 10 (1999), pp. 207-225 (ISSN: 0925-9899) | MR | Zbl | DOI

Athanasiadis, Christos A., Arrangements—Tokyo 1998 (Adv. Stud. Pure Math.), Volume 27, Kinokuniya, Tokyo, 2000, pp. 1-26 | MR | Zbl

Dolgachev, I.; Kapranov, M. Arrangements of hyperplanes and vector bundles on 𝐏n, Duke Math. J., Volume 71 (1993), pp. 633-664 (ISSN: 0012-7094) | MR | Zbl | DOI

Edelman, P. H.; Reiner, V. Free arrangements and rhombic tilings, Discrete Comput. Geom., Volume 15 (1996), pp. 307-340 (ISSN: 0179-5376) | MR | Zbl | DOI

Faenzi, Daniele; Matei, Daniel; Vallès, Jean Hyperplane arrangements of Torelli type, Compos. Math., Volume 149 (2013), pp. 309-332 (ISSN: 0010-437X) | MR | Zbl | DOI

Faenzi, Daniele; Vallès, Jean Logarithmic bundles and line arrangements, an approach via the standard construction, J. Lond. Math. Soc., Volume 90 (2014), pp. 675-694 (ISSN: 0024-6107) | MR | Zbl | DOI

Grayson, D. R.; Stillman, M. E. Macaulay2, a software system for research in algebraic geometry ( http://www.math.uiuc.edu/Macaulay2/ )

Okonek, Christian; Schneider, Michael; Spindler, Heinz Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, 1980, 389 pages (ISBN: 3-7643-3000-7) | MR | Zbl

Postnikov, Alexander; Stanley, Richard P. Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Ser. A, Volume 91 (2000), pp. 544-597 (ISSN: 0097-3165) | MR | Zbl | DOI

Vallès, Jean Nombre maximal d'hyperplans instables pour un fibré de Steiner, Math. Z., Volume 233 (2000), pp. 507-514 (ISSN: 0025-5874) | MR | Zbl | DOI

Wakamiko, Atsushi On the exponents of 2-multiarrangements, Tokyo J. Math., Volume 30 (2007), pp. 99-116 (ISSN: 0387-3870) | MR | Zbl | DOI

Wakefield, Max; Yuzvinsky, Sergey Derivations of an effective divisor on the complex projective line, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4389-4403 (ISSN: 0002-9947) | MR | Zbl | DOI

Yoshinaga, Masahiko Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. math., Volume 157 (2004), pp. 449-454 (ISSN: 0020-9910) | MR | Zbl | DOI

Yoshinaga, Masahiko Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math., Volume 23 (2014), pp. 483-512 (ISSN: 0240-2963) | MR | Zbl | Numdam | DOI

Cité par Sources :