[Sur la dimension de Hausdorff de la baderne de Rauzy]
In this paper, we prove that the Hausdorff dimension of the Rauzy gasket is less than 2. By this result, we answer a question addressed by Pierre Arnoux. Also, this question is a very particular case of the conjecture stated by S.P. Novikov and A. Maltsev in 2003.
Dans cet article, nous montrons que la dimension de Hausdorff de la baderne de Rauzy est strictement inférieure à 2. Ce résultat répond à une question de Pierre Arnoux. C'est aussi une réponse, dans un cas très particulier, à une conjecture posée par S.P. Novikov et A. Maltsev en 2003.
DOI : 10.24033/bsmf.2722
Keywords: Systems of isometries, Rauzy induction, Hausdorff dimension
Mots-clés : Systèmes d'isométries, induction de Rauzy, dimension de Hausdorff
@article{BSMF_2016__144_3_539_0,
author = {Avila, Artur and Hubert, Pascal and Skripchenko, Alexandra},
title = {On the {Hausdorff} dimension of the {Rauzy} gasket},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {539--568},
year = {2016},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {144},
number = {3},
doi = {10.24033/bsmf.2722},
mrnumber = {3558432},
zbl = {1356.37018},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2722/}
}
TY - JOUR AU - Avila, Artur AU - Hubert, Pascal AU - Skripchenko, Alexandra TI - On the Hausdorff dimension of the Rauzy gasket JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 539 EP - 568 VL - 144 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2722/ DO - 10.24033/bsmf.2722 LA - en ID - BSMF_2016__144_3_539_0 ER -
%0 Journal Article %A Avila, Artur %A Hubert, Pascal %A Skripchenko, Alexandra %T On the Hausdorff dimension of the Rauzy gasket %J Bulletin de la Société Mathématique de France %D 2016 %P 539-568 %V 144 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2722/ %R 10.24033/bsmf.2722 %G en %F BSMF_2016__144_3_539_0
Avila, Artur; Hubert, Pascal; Skripchenko, Alexandra. On the Hausdorff dimension of the Rauzy gasket. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 3, pp. 539-568. doi: 10.24033/bsmf.2722
, Further developments in fractals and related fields (Trends Math.), Birkhäuser, 2013, pp. 1-23 | MR | Zbl | DOI
Weak mixing directions in non-arithmetic Veech surfaces, J. Amer. Math. Soc., Volume 29 (2016), pp. 1167-1208 (ISSN: 0894-0347) | MR | Zbl | DOI
Exponential mixing for the Teichmüller flow, Publ. Math. IHÉS, Volume 104 (2006), pp. 143-211 (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI
Exponential mixing for the Teichmüller flow in the space of quadratic differentials, Comment. Math. Helv., Volume 87 (2012), pp. 589-638 (ISSN: 0010-2571) | MR | Zbl | DOI
Stable actions of groups on real trees, Invent. math., Volume 121 (1995), pp. 287-321 (ISSN: 0020-9910) | MR | Zbl | DOI
Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., Volume 19 (2006), pp. 579-623 (ISSN: 0894-0347) | MR | Zbl | DOI
On a generalized Sierpiński fractal (preprint arXiv:0804.1154 )
Geometry of plane sections of the infinite regular skew polyhedron , Geom. Dedicata, Volume 138 (2009), pp. 51-67 (ISSN: 0046-5755) | MR | Zbl | DOI
Interval covering systems and plane sections of 3-periodic surfaces, Tr. Mat. Inst. Steklova, Volume 263 (2008), pp. 72-84 (ISSN: 0371-9685) | MR | Zbl | DOI
Pseudogroups of isometries of and Rips' theorem on free actions on -trees, Israel J. Math., Volume 87 (1994), pp. 403-428 (ISSN: 0021-2172) | MR | Zbl | DOI
Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems, Volume 5 (1985), pp. 257-271 (ISSN: 0143-3857) | MR | Zbl | DOI
La dynamique des pseudogroupes de rotations, Invent. math., Volume 113 (1993), pp. 633-670 (ISSN: 0020-9910) | MR | Zbl | DOI
Dynamical systems, topology, and conductivity in normal metals, J. Statist. Phys., Volume 115 (2004), pp. 31-46 (ISSN: 0022-4715) | MR | Zbl | DOI
Infinite clusters and critical values in two-dimensional circle percolation, Israel J. Math., Volume 68 (1989), pp. 63-81 (ISSN: 0021-2172) | MR | Zbl | DOI
The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk, Volume 37 (1982), pp. 3-49 ; translated in Russian Math. Surveys 37 (1982), p. 1–56 (ISSN: 0042-1316) | MR | Zbl
Symmetric interval identification systems of order three, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 643-656 (ISSN: 1078-0947) | MR | Zbl | DOI
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | MR | Zbl | DOI
Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 325-370 (ISSN: 0373-0956) | Numdam | MR | Zbl | DOI
Cité par Sources :






