[Expansions de résolventes et continuité de la matrice de diffusion aux seuils immergés: le cas des guides d'onde quantiques]
We present an inversion formula which can be used to obtain resolvent expansions near embedded thresholds. As an application, we prove for a class of quantum waveguides the absence of accumulation of eigenvalues and the continuity of the scattering matrix at all thresholds.
Nous présentons une formule d'inversion qui peut être utilisée pour obtenir des expansions de résolventes à proximité de seuils immergés. Comme application, nous démontrons pour une classe de guides d'onde quantiques l'absence d'accumulation de valeurs propres et la continuité de la matrice de diffusion en chaque seuil.
DOI : 10.24033/bsmf.2713
Keywords: Thresholds, resolvent expansions, scattering matrix, quantum waveguides.
Mots-clés : Seuils, expansions de résolventes, matrice de diffusion, guides d'onde quantiques.
@article{BSMF_2016__144_2_251_0,
author = {Richard, S. and de Aldecoa, R. Tiedra},
title = {Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {251--277},
year = {2016},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {144},
number = {2},
doi = {10.24033/bsmf.2713},
mrnumber = {3499081},
zbl = {1372.47004},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2713/}
}
TY - JOUR AU - Richard, S. AU - de Aldecoa, R. Tiedra TI - Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 251 EP - 277 VL - 144 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2713/ DO - 10.24033/bsmf.2713 LA - en ID - BSMF_2016__144_2_251_0 ER -
%0 Journal Article %A Richard, S. %A de Aldecoa, R. Tiedra %T Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides %J Bulletin de la Société Mathématique de France %D 2016 %P 251-277 %V 144 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2713/ %R 10.24033/bsmf.2713 %G en %F BSMF_2016__144_2_251_0
Richard, S.; de Aldecoa, R. Tiedra. Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 2, pp. 251-277. doi: 10.24033/bsmf.2713
Time delay and short-range scattering in quantum waveguides, Ann. Henri Poincaré, Volume 7 (2006), pp. 105-124 (ISSN: 1424-0637) | MR | Zbl | DOI
Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal., Volume 131 (1995), pp. 499-530 (ISSN: 0022-1236) | MR | Zbl | DOI
Linear operators and their spectra, Cambridge Studies in Advanced Math., 106, Cambridge Univ. Press, Cambridge, 2007, 451 pages (ISBN: 978-0-521-86629-3; 0-521-86629-4) | MR | Zbl | DOI
Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. I, Dyn. Partial Differ. Equ., Volume 1 (2004), pp. 359-379 (ISSN: 1548-159X) | MR | Zbl | DOI
Local time-decay of solutions to Schrödinger equations with time-periodic potentials, J. Statist. Phys., Volume 116 (2004), pp. 231-282 (ISSN: 0022-4715) | MR | Zbl | DOI
Théorie spectrale de quelques variétés à bouts, Ann. Sci. École Norm. Sup., Volume 22 (1989), pp. 137-160 (ISSN: 0012-9593) | Numdam | MR | Zbl | DOI
On the wave operators for the Friedrichs-Faddeev model, Ann. Henri Poincaré, Volume 13 (2012), pp. 1469-1482 (ISSN: 1424-0637) | MR | Zbl | DOI
A complete classification of threshold properties for one-dimensional discrete Schrödinger operators, Rev. Math. Phys., Volume 27 (2015) | MR | Zbl
Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 http://projecteuclid.org/euclid.dmj/1077313577 (ISSN: 0012-7094) | MR | Zbl
A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., Volume 13 (2001), pp. 717-754 (ISSN: 0129-055X) | MR | Zbl | DOI
Erratum: “A unified approach to resolvent expansions at thresholds” [Rev. Math. Phys. 13 (2001), p. 717–754], Rev. Math. Phys., Volume 16 (2004), pp. 675-677 (ISSN: 0129-055X) | MR | Zbl | DOI
Perturbation theory for linear operators, Classics in Mathematics, Springer, Berlin, 1995, 619 pages (ISBN: 3-540-58661-X) | MR | Zbl | DOI
Trace ideals and their applications, Mathematical Surveys and Monographs, 120, Amer. Math. Soc., Providence, RI, 2005, 150 pages (ISBN: 0-8218-3581-5) | MR | Zbl
Mathematical scattering theory, Translations of Mathematical Monographs, 105, Amer. Math. Soc., Providence, RI, 1992, 341 pages (ISBN: 0-8218-4558-6) | MR | Zbl | DOI
Cité par Sources :






