Smoothening cone points with Ricci flow
[Lissage de points coniques avec flot de Ricci]
Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 4, pp. 619-633

We consider Ricci flow on a closed surface with cone points. The main result is: given a (nonsmooth) cone metric g0 over a closed surface there is a smooth Ricci flow g(t) defined for (0,T], with curvature unbounded above, such that g(t) tends to g0 as t0. This result means that Ricci flow provides a way for instantaneously smoothening cone points. We follow the argument of P. Topping in [Int. Math. Res. Not. 2012 (2012)] modifying his reasoning for cusps of negative curvature; in that sense we can consider cusps as a limiting zero-angle cone, and we generalize to any angle between 0 and 2π.

On considère un flot de Ricci sur une surface fermée avec des points coniques. Le résultat principal est : étant donné une métrique conique g0 (non lisse) sur une surface fermée, il existe un flot de Ricci lisse g(t) défini pour (0,T], avec courbure non bornée supérieurement, tel que g(t) tend vers g0 quand t0. Cet résultat implique que le flot de Ricci donne une méthode pour lisser instantanément des points coniques. On suit un argument de P. Topping dans [Int. Math. Res. Not. 2012 (2012)] en modifiant son raisonnement pour les cusps de courbure négative; en ce sens, on peut considérer les cusps comme un cas limite de points coniques d'angle zéro, et nous généralisons à un angle quelconque entre 0 et 2π.

Publié le :
DOI : 10.24033/bsmf.2700
Classification : 53C44
Keywords: Ricci flow, conic singularities.
Mots-clés : Flot de Ricci, singularités coniques.
@article{BSMF_2015__143_4_619_0,
     author = {Ramos, Daniel},
     title = {Smoothening cone points with {Ricci} flow},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {619--633},
     year = {2015},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {143},
     number = {4},
     doi = {10.24033/bsmf.2700},
     mrnumber = {3450497},
     zbl = {1335.53089},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2700/}
}
TY  - JOUR
AU  - Ramos, Daniel
TI  - Smoothening cone points with Ricci flow
JO  - Bulletin de la Société Mathématique de France
PY  - 2015
SP  - 619
EP  - 633
VL  - 143
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2700/
DO  - 10.24033/bsmf.2700
LA  - en
ID  - BSMF_2015__143_4_619_0
ER  - 
%0 Journal Article
%A Ramos, Daniel
%T Smoothening cone points with Ricci flow
%J Bulletin de la Société Mathématique de France
%D 2015
%P 619-633
%V 143
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2700/
%R 10.24033/bsmf.2700
%G en
%F BSMF_2015__143_4_619_0
Ramos, Daniel. Smoothening cone points with Ricci flow. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 4, pp. 619-633. doi: 10.24033/bsmf.2700

Chen, Xiuxiong; Lu, Peng; Tian, Gang A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 3391-3393 (ISSN: 0002-9939) | MR | Zbl | DOI

Chow, Bennett On the entropy estimate for the Ricci flow on compact 2-orbifolds, J. Differential Geom., Volume 33 (1991), pp. 597-600 http://projecteuclid.org/euclid.jdg/1214446332 (ISSN: 0022-040X) | MR | Zbl

Chow, Bennett The Ricci flow on the 2-sphere, J. Differential Geom., Volume 33 (1991), pp. 325-334 http://projecteuclid.org/euclid.jdg/1214446319 (ISSN: 0022-040X) | MR | Zbl

Chow, Bennett; Knopf, Dan The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, Amer. Math. Soc., Providence, RI, 2004, 325 pages (ISBN: 0-8218-3515-7) | MR | Zbl | DOI

Chow, Bennett; Wu, Lang-Fang The Ricci flow on compact 2-orbifolds with curvature negative somewhere, Comm. Pure Appl. Math., Volume 44 (1991), pp. 275-286 (ISSN: 0010-3640) | MR | Zbl | DOI

Giesen, Gregor; Topping, Peter M. Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1860-1880 (ISSN: 0360-5302) | MR | Zbl | DOI

Hamilton, Richard S., Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemp. Math.), Volume 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262 | MR | Zbl | DOI

Mazzeo, Rafe; Rubinstein, Yanir A.; Sesum, Natasa Ricci flow on surfaces with conic singularities, Anal. PDE, Volume 8 (2015), pp. 839-882 (ISSN: 2157-5045) | MR | Zbl | DOI

Richard, Thomas Canonical smoothing of compact Alexandrov surfaces via Ricci flow (preprint arXiv:1204.5461 ) | MR | Zbl | Numdam

Simon, Miles Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. reine angew. Math., Volume 662 (2012), pp. 59-94 (ISSN: 0075-4102) | MR | Zbl | DOI

Topping, Peter M. Uniqueness and nonuniqueness for Ricci flow on surfaces: reverse cusp singularities, Int. Math. Res. Not., Volume 2012 (2012), pp. 2356-2376 (ISSN: 1073-7928) | MR | Zbl | DOI

Wu, Lang-Fang The Ricci flow on 2-orbifolds with positive curvature, J. Differential Geom., Volume 33 (1991), pp. 575-596 http://projecteuclid.org/euclid.jdg/1214446331 (ISSN: 0022-040X) | MR | Zbl

Yin, Hao Ricci flow on surfaces with conical singularities, J. Geom. Anal., Volume 20 (2010), pp. 970-995 (ISSN: 1050-6926) | MR | Zbl | DOI

Cité par Sources :