[Lissage de points coniques avec flot de Ricci]
We consider Ricci flow on a closed surface with cone points. The main result is: given a (nonsmooth) cone metric over a closed surface there is a smooth Ricci flow defined for , with curvature unbounded above, such that tends to as . This result means that Ricci flow provides a way for instantaneously smoothening cone points. We follow the argument of P. Topping in [Int. Math. Res. Not. 2012 (2012)] modifying his reasoning for cusps of negative curvature; in that sense we can consider cusps as a limiting zero-angle cone, and we generalize to any angle between 0 and .
On considère un flot de Ricci sur une surface fermée avec des points coniques. Le résultat principal est : étant donné une métrique conique (non lisse) sur une surface fermée, il existe un flot de Ricci lisse défini pour , avec courbure non bornée supérieurement, tel que tend vers quand . Cet résultat implique que le flot de Ricci donne une méthode pour lisser instantanément des points coniques. On suit un argument de P. Topping dans [Int. Math. Res. Not. 2012 (2012)] en modifiant son raisonnement pour les cusps de courbure négative; en ce sens, on peut considérer les cusps comme un cas limite de points coniques d'angle zéro, et nous généralisons à un angle quelconque entre 0 et .
DOI : 10.24033/bsmf.2700
Keywords: Ricci flow, conic singularities.
Mots-clés : Flot de Ricci, singularités coniques.
@article{BSMF_2015__143_4_619_0,
author = {Ramos, Daniel},
title = {Smoothening cone points with {Ricci} flow},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {619--633},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {4},
doi = {10.24033/bsmf.2700},
mrnumber = {3450497},
zbl = {1335.53089},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2700/}
}
TY - JOUR AU - Ramos, Daniel TI - Smoothening cone points with Ricci flow JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 619 EP - 633 VL - 143 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2700/ DO - 10.24033/bsmf.2700 LA - en ID - BSMF_2015__143_4_619_0 ER -
%0 Journal Article %A Ramos, Daniel %T Smoothening cone points with Ricci flow %J Bulletin de la Société Mathématique de France %D 2015 %P 619-633 %V 143 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2700/ %R 10.24033/bsmf.2700 %G en %F BSMF_2015__143_4_619_0
Ramos, Daniel. Smoothening cone points with Ricci flow. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 4, pp. 619-633. doi: 10.24033/bsmf.2700
A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 3391-3393 (ISSN: 0002-9939) | MR | Zbl | DOI
On the entropy estimate for the Ricci flow on compact 2-orbifolds, J. Differential Geom., Volume 33 (1991), pp. 597-600 http://projecteuclid.org/euclid.jdg/1214446332 (ISSN: 0022-040X) | MR | Zbl
The Ricci flow on the 2-sphere, J. Differential Geom., Volume 33 (1991), pp. 325-334 http://projecteuclid.org/euclid.jdg/1214446319 (ISSN: 0022-040X) | MR | Zbl
The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, Amer. Math. Soc., Providence, RI, 2004, 325 pages (ISBN: 0-8218-3515-7) | MR | Zbl | DOI
The Ricci flow on compact 2-orbifolds with curvature negative somewhere, Comm. Pure Appl. Math., Volume 44 (1991), pp. 275-286 (ISSN: 0010-3640) | MR | Zbl | DOI
Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1860-1880 (ISSN: 0360-5302) | MR | Zbl | DOI
, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemp. Math.), Volume 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262 | MR | Zbl | DOI
Ricci flow on surfaces with conic singularities, Anal. PDE, Volume 8 (2015), pp. 839-882 (ISSN: 2157-5045) | MR | Zbl | DOI
Canonical smoothing of compact Alexandrov surfaces via Ricci flow (preprint arXiv:1204.5461 ) | MR | Zbl | Numdam
Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. reine angew. Math., Volume 662 (2012), pp. 59-94 (ISSN: 0075-4102) | MR | Zbl | DOI
Uniqueness and nonuniqueness for Ricci flow on surfaces: reverse cusp singularities, Int. Math. Res. Not., Volume 2012 (2012), pp. 2356-2376 (ISSN: 1073-7928) | MR | Zbl | DOI
The Ricci flow on 2-orbifolds with positive curvature, J. Differential Geom., Volume 33 (1991), pp. 575-596 http://projecteuclid.org/euclid.jdg/1214446331 (ISSN: 0022-040X) | MR | Zbl
Ricci flow on surfaces with conical singularities, J. Geom. Anal., Volume 20 (2010), pp. 970-995 (ISSN: 1050-6926) | MR | Zbl | DOI
Cité par Sources :






