On démontre un théorème limite central local pour les marches aléatoires aux plus proches voisins en environnement aléatoire stationnaire de conductances sur en s'affranchissant simultanément des deux hypothèses classiques d'uniforme ellipticité et d'indépendance sur les conductances. Outre le théorème limite central, on utilise pour cela des inégalités différentielles discrètes du type « inégalités de Nash » associées à la représentation de Hausdorff des suites complètement décroissantes. La méthode s'adapte aux chaînes de Markov analogues en temps continu.
We prove a local central limit theorem for nearest neighbors random walks in stationary random environment of conductances on without using any of both classic assumptions of uniform ellipticity and independence on the conductances. Besides the central limit theorem, we use discrete differential Nash-type inequalities associated with the Hausdorff's representation of the completely decreasing sequences. The method is also valid for analogous continuous time Markov chains.
DOI : 10.24033/bsmf.2695
Mots-clés : Marches aléatoires, environnement aléatoire stationnaire de conductances, théorème limite central local, inégalités de Nash, représentation de Hausdorff des suites complètement décroissantes, théorèmes ergodiques.
Keywords: Random walks, stationary random environment of conductances, local central limit theorem, Nash's inequalities, Hausdorff's representation of the completely decreasing sequences, ergodic theorems.
@article{BSMF_2015__143_3_467_0,
author = {Derrien, Jean-Marc},
title = {Un th\'eor\`eme limite central local en environnement al\'eatoire stationnaire de conductances sur $\mathbb {Z}$},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {467--488},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {3},
doi = {10.24033/bsmf.2695},
mrnumber = {3417730},
zbl = {1334.60016},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2695/}
}
TY - JOUR
AU - Derrien, Jean-Marc
TI - Un théorème limite central local en environnement aléatoire stationnaire de conductances sur $\mathbb {Z}$
JO - Bulletin de la Société Mathématique de France
PY - 2015
SP - 467
EP - 488
VL - 143
IS - 3
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2695/
DO - 10.24033/bsmf.2695
LA - fr
ID - BSMF_2015__143_3_467_0
ER -
%0 Journal Article
%A Derrien, Jean-Marc
%T Un théorème limite central local en environnement aléatoire stationnaire de conductances sur $\mathbb {Z}$
%J Bulletin de la Société Mathématique de France
%D 2015
%P 467-488
%V 143
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2695/
%R 10.24033/bsmf.2695
%G fr
%F BSMF_2015__143_3_467_0
Derrien, Jean-Marc. Un théorème limite central local en environnement aléatoire stationnaire de conductances sur $\mathbb {Z}$. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 3, pp. 467-488. doi: 10.24033/bsmf.2695
Invariance principle for the random conductance model, Probab. Theory Related Fields, Volume 156 (2013), pp. 535-580 (ISSN: 0178-8051) | MR | Zbl | DOI
Invariance principle for the random conductance model in a degenerate ergodic environment (preprint arXiv:1306.2521 ) | MR
Random walks on supercritical percolation clusters, Ann. Probab., Volume 32 (2004), pp. 3024-3084 (ISSN: 0091-1798) | MR | Zbl | DOI
Invariance principle for the random conductance model with unbounded conductances, Ann. Probab., Volume 38 (2010), pp. 234-276 (ISSN: 0091-1798) | MR | Zbl | DOI
Parabolic Harnack inequality and local limit theorem for percolation clusters, Electron. J. Probab., Volume 14 (2009), pp. 1-27 (ISSN: 1083-6489) | MR | Zbl
Transience, recurrence and critical behavior for long-range percolation, Comm. Math. Phys., Volume 226 (2002), pp. 531-558 (ISSN: 0010-3616) | MR | Zbl | DOI
Quenched invariance principle for simple random walk on percolation clusters, Probab. Theory Related Fields, Volume 137 (2007), pp. 83-120 (ISSN: 0178-8051) | MR | Zbl | DOI
Anomalous heat-kernel decay for random walk among bounded random conductances, Ann. Inst. Henri Poincaré Probab. Stat., Volume 44 (2008), pp. 374-392 (ISSN: 0246-0203) | MR | Zbl | Numdam | DOI
Recent progress on the random conductance model, Probab. Surv., Volume 8 (2011), pp. 294-373 (ISSN: 1549-5787) | MR | Zbl | DOI
Subdiffusive heat-kernel decay in four-dimensional i.i.d. random conductance models, J. Lond. Math. Soc., Volume 86 (2012), pp. 455-481 (ISSN: 0024-6107) | MR | Zbl | DOI
Functional CLT for random walk among bounded random conductances, Electron. J. Probab., Volume 12 (2007), pp. 1323-1348 (ISSN: 1083-6489) | MR | Zbl | DOI
Spectral homogenization of reversible random walks on in a random environment, Stochastic Process. Appl., Volume 104 (2003), pp. 29-56 (ISSN: 0304-4149) | MR | Zbl | DOI
Geodesics and recurrence of random walks in disordered systems, Electron. Comm. Probab., Volume 7 (2002), pp. 101-115 (ISSN: 1083-589X) | MR | Zbl | DOI
Heat-kernel estimates for random walk among random conductances with heavy tail, Stochastic Process. Appl., Volume 120 (2010), pp. 182-194 (ISSN: 0304-4149) | MR | Zbl | DOI
Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist., Volume 23 (1987), pp. 245-287 (ISSN: 0246-0203) | MR | Zbl | Numdam
Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, Volume 9 (1993), pp. 293-314 (ISSN: 0213-2230) | MR | Zbl | DOI
Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana, Volume 15 (1999), pp. 181-232 (ISSN: 0213-2230) | MR | Zbl | DOI
Théorème ergodique pour cocycle harmonique, applications au milieu aléatoire (preprint arXiv:1309.1566 )
Variance limite d'une marche aléatoire réversible en milieu aléatoire sur , C. R. Math. Acad. Sci. Paris, Volume 347 (2009), pp. 401-406 (ISSN: 1631-073X) | MR | Zbl | DOI
Majoration du noyau de la chaleur en environnement stationnaire de conductances, C. R. Math. Acad. Sci. Paris, Volume 347 (2009), pp. 85-88 (ISSN: 1631-073X) | MR | Zbl | DOI
Random walks and electric networks, Carus Mathematical Monographs, 22, Mathematical Association of America, Washington, DC, 1984, 159 pages (ISBN: 0-88385-024-9) | MR | Zbl | DOI
An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, 1971, 669 pages | MR | Zbl
Random walk on the infinite cluster of the percolation model, Probab. Theory Related Fields, Volume 96 (1993), pp. 33-44 (ISSN: 0178-8051) | MR | Zbl | DOI
Probability and random processes, The Clarendon Press, Oxford Univ. Press, New York, 1992, 541 pages (ISBN: 0-19-853666-6; 0-19-853665-8) | MR | Zbl
Summationsmethoden und Momentfolgen. I, Math. Z., Volume 9 (1921), pp. 74-109 (ISSN: 0025-5874) | MR | JFM | DOI
Über Potenzreihen mit positivem, reellen Teil im Einheitskreis, Leipziger Berichte, Volume 63 (1911), pp. 501-511 | JFM
On birth and death processes in symmetric random environment, J. Statist. Phys., Volume 37 (1984), pp. 561-576 (ISSN: 0022-4715) | MR | Zbl | DOI
The averaging method and walks in inhomogeneous environments, Russ. Math. Surv., Volume 40 (1985), pp. 73-145 (ISSN: 0042-1316) | MR | Zbl | DOI
Les théorèmes limites pour des processus stationnaires, Ph. D. Thesis , Université de Tours (2012)
Quenched invariance principles for random walks with random conductances, J. Stat. Phys., Volume 130 (2008), pp. 1025-1046 (ISSN: 0022-4715) | MR | Zbl | DOI
Quenched invariance principles for random walks on percolation clusters, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 463 (2007), pp. 2287-2307 (ISSN: 1364-5021) | MR | Zbl | DOI
Décroissance du noyau de la chaleur et isopérimétrie sur un amas de percolation, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001), pp. 927-931 (ISSN: 0764-4442) | MR | Zbl | DOI
Isoperimetry and heat kernel decay on percolation clusters, Ann. Probab., Volume 32 (2004), pp. 100-128 (ISSN: 0091-1798) | MR | Zbl | DOI
A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., Volume 17 (1964), pp. 101-134 correction dans 20 (1967), 231–236 (ISSN: 0010-3640) | MR | Zbl | DOI
Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., Volume 80 (1958), pp. 931-954 (ISSN: 0002-9327) | MR | Zbl | DOI
Ergodic theory, Cambridge Studies in Advanced Math., 2, Cambridge Univ. Press, Cambridge, 1983, 329 pages (ISBN: 0-521-23632-0) | MR | Zbl | DOI
Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991, 424 pages (ISBN: 0-07-054236-8) | MR | Zbl
Quenched invariance principles for walks on clusters of percolation or among random conductances, Probab. Theory Related Fields, Volume 129 (2004), pp. 219-244 (ISSN: 0178-8051) | MR | Zbl | DOI
Cité par Sources :






