Log-uniruled affine varieties without cylinder-like open subsets
[Variétés affines log-uniréglées ne contenant pas d'ouverts cylindriques]
Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 383-401

A classical result of Miyanishi-Sugie and Keel-McKernan asserts that for smooth affine surfaces, 𝔸1-uniruledness is equivalent to 𝔸1-ruledness, both properties being in fact equivalent to the negativity of the logarithmic Kodaira dimension. Here we show in contrast that starting from dimension three, there exist smooth affine varieties which are 𝔸1-uniruled but not 𝔸1-ruled.

D'après une caractérisation due à Miyanishi-Sugie et Keel-McKernan, une surface affine lisse S est 𝔸1-uniréglée si et seulement si elle est 𝔸1-réglée, ces deux propriétés étant en fait équivalentes à la négativité de la dimension de Kodaira logarithmique de S. Nous montrons dans cet article que cette équivalence ne subsiste pas en dimension supérieure ou égale à trois.

Publié le :
DOI : 10.24033/bsmf.2692
Classification : 14J50, 14R25, 14D06, 14E08
Keywords: log-uniruled varieties, affine ruled varieties, cylindrical open subset, additive group actions.
Mots-clés : Variétés log-uniréglées, variétés affine-réglées, ouverts cylindriques, actions de groupes additifs.
@article{BSMF_2015__143_2_383_0,
     author = {Dubouloz, Adrien and Kishimoto, Takashi},
     title = {Log-uniruled affine varieties without cylinder-like open subsets},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {383--401},
     year = {2015},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {143},
     number = {2},
     doi = {10.24033/bsmf.2692},
     mrnumber = {3351185},
     zbl = {1327.14196},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2692/}
}
TY  - JOUR
AU  - Dubouloz, Adrien
AU  - Kishimoto, Takashi
TI  - Log-uniruled affine varieties without cylinder-like open subsets
JO  - Bulletin de la Société Mathématique de France
PY  - 2015
SP  - 383
EP  - 401
VL  - 143
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2692/
DO  - 10.24033/bsmf.2692
LA  - en
ID  - BSMF_2015__143_2_383_0
ER  - 
%0 Journal Article
%A Dubouloz, Adrien
%A Kishimoto, Takashi
%T Log-uniruled affine varieties without cylinder-like open subsets
%J Bulletin de la Société Mathématique de France
%D 2015
%P 383-401
%V 143
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2692/
%R 10.24033/bsmf.2692
%G en
%F BSMF_2015__143_2_383_0
Dubouloz, Adrien; Kishimoto, Takashi. Log-uniruled affine varieties without cylinder-like open subsets. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 383-401. doi: 10.24033/bsmf.2692

Chelʼtsov, I. A. Birationally rigid Fano varieties, Uspekhi Mat. Nauk, Volume 60 (2005), pp. 71-160 (ISSN: 0042-1316) | MR | Zbl | DOI

Clemens, C. Herbert; Griffiths, Phillip A. The intermediate Jacobian of the cubic threefold, Ann. of Math., Volume 95 (1972), pp. 281-356 (ISSN: 0003-486X) | MR | Zbl | DOI

Corti, Alessio Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., Volume 4 (1995), pp. 223-254 (ISSN: 1056-3911) | MR | Zbl

de Fernex, Tommaso Birationally rigid hypersurfaces, Invent. Math., Volume 192 (2013), pp. 533-566 (ISSN: 0020-9910) | MR | Zbl | DOI

Freudenburg, Gene Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, Springer, Berlin, 2006, 261 pages (ISBN: 978-3-540-29521-1; 3-540-29521-6) | MR | Zbl

Gurjar, R. V.; Masuda, K.; Miyanishi, Masayoshi 𝔸1-fibrations on affine threefolds, J. Pure Appl. Algebra, Volume 216 (2012), pp. 296-313 (ISSN: 0022-4049) | MR | Zbl | DOI

Iitaka, S., Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 175-189 | MR | Zbl | DOI

Ikeda, Atsushi The varieties of tangent lines to hypersurfaces in projective spaces, Comm. Algebra, Volume 40 (2012), pp. 3716-3725 (ISSN: 0092-7872) | MR | Zbl | DOI

Kaliman, Shulim; Zaidenberg, Mikhail Families of affine planes: the existence of a cylinder, Michigan Math. J., Volume 49 (2001), pp. 353-367 (ISSN: 0026-2285) | MR | Zbl | DOI

Keel, S.; McKernan, J. Rational curves on quasi-projective surfaces, Memoirs of the AMS, Volume 669 (1999) | MR | Zbl

Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail, Affine algebraic geometry (CRM Proc. Lecture Notes), Volume 54, Amer. Math. Soc., Providence, RI, 2011, pp. 123-163 | MR | Zbl | DOI

Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail Affine cones over Fano threefolds and additive group actions, Osaka J. Math., Volume 51 (2014), pp. 1093-1112 http://projecteuclid.org/euclid.ojm/1414761913 (preprint version: arXiv:1106.1312v1 ) (ISSN: 0030-6126) | MR | Zbl

Kollár, János Flips and abundance for algebraic threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992, pp. 1-258 (ISSN: 0303-1179) | MR

Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | MR | Zbl | DOI

Miyanishi, Masayoshi Singularities of normal affine surfaces containing cylinderlike open sets, J. Algebra, Volume 68 (1981), pp. 268-275 (ISSN: 0021-8693) | MR | Zbl | DOI

Miyanishi, Masayoshi; Sugie, Tohru Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., Volume 20 (1980), pp. 11-42 (ISSN: 0023-608X) | MR | Zbl

Nagata, Masayoshi Polynomial rings and affine spaces, Amer. Math. Soc., Providence, R.I., 1978, 33 pages (ISBN: 0-8218-1687-X) | MR | Zbl

Ohta, Tomoaki The structure of algebraic embeddings of 2 into 3 (the normal quartic hypersurface case. I), Osaka J. Math., Volume 38 (2001), pp. 507-532 http://projecteuclid.org/euclid.ojm/1153492510 (ISSN: 0030-6126) | MR | Zbl

Pukhlikov, Aleksandr V. Birational automorphisms of Fano hypersurfaces, Invent. Math., Volume 134 (1998), pp. 401-426 (ISSN: 0020-9910) | MR | Zbl | DOI

Cité par Sources :