[Solutions globales d'énergie infinie pour l'équation des ondes cubique]
We prove the existence of infinite energy global solutions of the cubic wave equation in dimension greater than 3. The data is a typical element on the support of suitable probability measures.
On considère l'équation des ondes cubique sur un tore de dimension supérieure à 3, et on montre l'existence de solutions globales d'énergie infinie. La condition initiale de l'équation est un élément typique du support d'une mesure de probabilité.
DOI : 10.24033/bsmf.2688
Keywords: Nonlinear wave equation, random data, weak solutions, global solutions
Mots-clés : Équation des ondes non-linéaire, conditions initiales aléatoires, solutions faibles, solutions globales.
@article{BSMF_2015__143_2_301_0,
author = {Burq, Nicolas and Thomann, Laurent and Tzvetkov, Nikolay},
title = {Global infinite energy solutions for the cubic wave equation},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {301--313},
year = {2015},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {143},
number = {2},
doi = {10.24033/bsmf.2688},
mrnumber = {3351181},
zbl = {1320.35217},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2688/}
}
TY - JOUR AU - Burq, Nicolas AU - Thomann, Laurent AU - Tzvetkov, Nikolay TI - Global infinite energy solutions for the cubic wave equation JO - Bulletin de la Société Mathématique de France PY - 2015 SP - 301 EP - 313 VL - 143 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2688/ DO - 10.24033/bsmf.2688 LA - en ID - BSMF_2015__143_2_301_0 ER -
%0 Journal Article %A Burq, Nicolas %A Thomann, Laurent %A Tzvetkov, Nikolay %T Global infinite energy solutions for the cubic wave equation %J Bulletin de la Société Mathématique de France %D 2015 %P 301-313 %V 143 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2688/ %R 10.24033/bsmf.2688 %G en %F BSMF_2015__143_2_301_0
Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay. Global infinite energy solutions for the cubic wave equation. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 301-313. doi: 10.24033/bsmf.2688
Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids, Comm. Math. Phys., Volume 129 (1990), pp. 431-444 http://projecteuclid.org/euclid.cmp/1104180846 (ISSN: 0010-3616) | MR | Zbl | DOI
Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., Volume 166 (1994), pp. 1-26 http://projecteuclid.org/euclid.cmp/1104271501 (ISSN: 0010-3616) | MR | Zbl | DOI
Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., Volume 176 (1996), pp. 421-445 http://projecteuclid.org/euclid.cmp/1104286005 (ISSN: 0010-3616) | MR | Zbl | DOI
Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004), pp. 569-605 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), pp. 917-962 (ISSN: 0012-9593) | MR | Zbl | DOI
Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 2137-2198 (ISSN: 0373-0956) | Numdam | MR | Zbl | DOI
Remarks on the Gibbs measures for nonlinear dispersive equations (preprint arXiv:1412.7499 ) | MR
Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008), pp. 449-475 (ISSN: 0020-9910) | MR | Zbl | DOI
Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math., Volume 173 (2008), pp. 477-496 (ISSN: 0020-9910) | MR | Zbl | DOI
Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1-30 (ISSN: 1435-9855) | MR | Zbl | DOI
Ill-posedness for nonlinear Schrödinger and wave equations (preprint arXiv:math/0311048 )
Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., Volume 196 (2002), pp. 180-210 (ISSN: 0022-1236) | MR | Zbl | DOI
Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995), pp. 50-68 (ISSN: 0022-1236) | MR | Zbl | DOI
Perte de régularité pour les équations d'ondes sur-critiques, Bull. Soc. Math. France, Volume 133 (2005), pp. 145-157 (ISSN: 0037-9484) | MR | Zbl | Numdam | DOI
Almost sure existence of global weak solutions for supercritical Navier-Stokes equations, SIAM J. Math. Anal., Volume 45 (2013), pp. 3431-3452 (ISSN: 0036-1410) | MR | Zbl | DOI
Invariant Gibbs measures and a.s. global well posedness for coupled KdV systems, Differential Integral Equations, Volume 22 (2009), pp. 637-668 (ISSN: 0893-4983) | MR | Zbl
Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system, SIAM J. Math. Anal., Volume 41 (2009/10), pp. 2207-2225 (ISSN: 0036-1410) | MR | Zbl | DOI
Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., Volume 3 (2006), pp. 111-160 (ISSN: 1548-159X) | MR | Zbl | DOI
Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 2543-2604 (ISSN: 0373-0956) | Numdam | MR | Zbl | DOI
Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math., 1756, Springer, Berlin, 2001, 147 pages (ISBN: 3-540-41833-4) | MR | Zbl
Cité par Sources :






