Estimates of the linearization of circle diffeomorphisms
[Estimées de la linéarisation de difféomorphismes du cercle]
Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 673-718

A celebrated theorem by Herman and Yoccoz asserts that if the rotation number α of a C-diffeomorphism of the circle f satisfies a Diophantine condition, then f is C-conjugated to a rotation. In this paper, we establish explicit relationships between the Ck norms of this conjugacy and the Diophantine condition on α. To obtain these estimates, we follow a suitably modified version of Yoccoz's proof.

Un célèbre théorème de Herman et Yoccoz affirme que si le nombre de rotation α d'un C-difféomorphisme du cercle f satisfait une condition diophantienne, alors f est C-conjugué à une rotation. Dans cet article, nous établissons des relations explicites entre les Ck normes de cette conjuguée et la condition diophantienne sur α. Pour obtenir ces estimées, nous suivons une version convenablement modifiée de la preuve de Yoccoz.

Publié le :
DOI : 10.24033/bsmf.2676
Classification : 37C05
Keywords: Circle diffeomorphisms, rotation number, conjugacy, estimates.
Mots-clés : Difféomorphismes du cercle, nombre de rotation, conjuguée, estimées.
@article{BSMF_2014__142_4_673_0,
     author = {Benhenda, Mostapha},
     title = {Estimates of the linearization of circle diffeomorphisms},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {673--718},
     year = {2014},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {142},
     number = {4},
     doi = {10.24033/bsmf.2676},
     mrnumber = {3306873},
     zbl = {1322.37011},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2676/}
}
TY  - JOUR
AU  - Benhenda, Mostapha
TI  - Estimates of the linearization of circle diffeomorphisms
JO  - Bulletin de la Société Mathématique de France
PY  - 2014
SP  - 673
EP  - 718
VL  - 142
IS  - 4
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2676/
DO  - 10.24033/bsmf.2676
LA  - en
ID  - BSMF_2014__142_4_673_0
ER  - 
%0 Journal Article
%A Benhenda, Mostapha
%T Estimates of the linearization of circle diffeomorphisms
%J Bulletin de la Société Mathématique de France
%D 2014
%P 673-718
%V 142
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2676/
%R 10.24033/bsmf.2676
%G en
%F BSMF_2014__142_4_673_0
Benhenda, Mostapha. Estimates of the linearization of circle diffeomorphisms. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 673-718. doi: 10.24033/bsmf.2676

Arnolʼd, V.I. Small denominators I: Mappings of the circumference into itself, American Mathematical Society Translations, Volume 46 (1965), pp. 213-284 | Zbl

Benhenda, M Circle Diffeomorphisms: Quasi-reducibility and Commuting Diffeomorphisms, Nonlinearity, Volume 25 (2012), pp. 1981-1996 | MR | Zbl | DOI

Benhenda, M. Estimates of the conjugacy to rotations of circle diffeomorphisms. Successives conjugacies and smooth realizations, Ph. D. Thesis , Université Paris 13 (2012)

Fayad, Bassam; Khanin, K.M. Smooth linearization of commuting circle diffeomorphisms, Annals of Mathematics, Volume 170 (2009), pp. 961-980 | MR | Zbl | DOI

Herman, M.R. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle à des Rotations, Publications Mathématiques de L'IHÉS, Volume 49 (1979), pp. 5-233 | MR | Zbl | Numdam | DOI

Katok, Anatole; Hasselblatt, B. Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge Univ. Press, 1996 | MR | Zbl

Katznelson, Y.; Ornstein, D. The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 681-690 | MR | DOI

Katznelson, Y.; Ornstein, D. The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 643-680 | MR | Zbl | DOI

Khanin, K.M.; Sinai, Y.G. A new proof of M. Herman's theorem, Communications in Mathematical Physics, Volume 112 (1987), pp. 89-101 | MR | Zbl | DOI

Khanin, K.M.; Teplinsky, A. Herman's theory revisited, Inventiones Mathematicae, Volume 178 (2009), pp. 333-344 | MR | Zbl | DOI

De la Llave, R. A tutorial on KAM theory, Smooth Ergodic Theory and Its Applications: Proceedings of the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications, July 26-August 13, 1999, University of Washington, Seattle, Volume 69 (1999), 175 pages | MR | Zbl

Moser, J. A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Scuola Norm. Sup. Pisa, Volume 20 (1966), pp. 265-315 | MR | Zbl | Numdam

Sinai, Y.G.; Khanin, KM Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russian Mathematical Surveys, Volume 44 (1989), pp. 69-99 | Zbl | MR | DOI

Yoccoz, J.C. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Annales scientifiques de l'École Normale Supérieure Sér. 4, Volume 17 (1984), pp. 333-359 | MR | Zbl | Numdam | DOI

Yoccoz, J.C. Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors: lectures given at the CIME Summer School, held in Cetraro, Italy, June 13-20, 1998, Volume 1784 (2002), 125 pages | MR | Zbl

Cité par Sources :