[Projections hyperelliptiques -osculantes et surfaces rationnelles]
Let be a positive integer, an algebraically closed field of characteristic and an elliptic curve defined over . We consider the hyperelliptic curves equipped with a projection over , such that the natural image of in the Jacobian of the curve osculates to order to the embedding of the curve, at a Weierstrass point. We first study the relations between the degree , the arithmetic genus and the osculating degree of such covers. We prove that they are in a one-to-one correspondence with rational curves of linear systems in a rational surface and deduce ()-dimensional families of hyperelliptic d-osculating covers, of arbitrary big genus if or such that if . It follows at last, -dimensional families of solutions of the hierarchy, doubly periodic with respect to the -th variable.
Soit un entier positif, un corps algébriquement clos de caractéristique et une courbe elliptique définie sur . On étudie les courbes hyperelliptiques munies d'une projection sur , telles que l'image naturelle de dans la jacobienne de la courbe, oscule à l'ordre au plongement de celle-ci, et ce en un point de Weierstrass. On étudie tout d'abord les relations entre le degré , le genre arithmétique et l'ordre d'osculation des ces projections. On prouve qu'elles sont en correspondance biunivoque avec des courbes rationnelles dans des systèmes linéaires d'une surface rationnelle et on en déduit des familles -dimensionnelles de revetements hyperelliptiques -osculants de genre , arbitrairement grand si la caractéristique , ou si . Il en résulte des familles -dimensionnelles de solutions de la hiérarchie , doublement périodiques par rapport à la -ième variable.
@article{BSMF_2014__142_3_379_0,
author = {Treibich, Armando},
title = {Hyperelliptic $d$-osculating covers and rational surfaces},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {379--409},
year = {2014},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {142},
number = {3},
doi = {10.24033/bsmf.2669},
mrnumber = {3295718},
zbl = {1310.14032},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2669/}
}
TY - JOUR AU - Treibich, Armando TI - Hyperelliptic $d$-osculating covers and rational surfaces JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 379 EP - 409 VL - 142 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2669/ DO - 10.24033/bsmf.2669 LA - en ID - BSMF_2014__142_3_379_0 ER -
%0 Journal Article %A Treibich, Armando %T Hyperelliptic $d$-osculating covers and rational surfaces %J Bulletin de la Société Mathématique de France %D 2014 %P 379-409 %V 142 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2669/ %R 10.24033/bsmf.2669 %G en %F BSMF_2014__142_3_379_0
Treibich, Armando. Hyperelliptic $d$-osculating covers and rational surfaces. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 3, pp. 379-409. doi: 10.24033/bsmf.2669
Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 (ISSN: 0010-3640) | MR | Zbl | DOI
Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analogue of the elliptic Calogero-Moser system, Funktsional. Anal. i Prilozhen., Volume 36 (2002), pp. 1-17 (ISSN: 0374-1990) | MR | Zbl | DOI
A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry, Dokl. Akad. Nauk SSSR, Volume 219 (1974), pp. 531-534 (ISSN: 0002-3264) | MR
Paires 3-tangentielles hyperelliptiques et solutions doublement périodiques en t de l'équation de Korteweg-de Vries, Ph. D. Thesis , Université d'Artois (Pôle de Lens) (2003)
Hyperelliptic osculating covers and KdV solutions periodic in , Int. Math. Res. Not., Volume 2006 (2006) (ISSN: 1073-7928) | MR | Zbl | DOI
Anticanonical rational surfaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1191-1208 (ISSN: 0002-9947) | MR | Zbl | DOI
Algebraic geometry, Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl | DOI
Schrödinger operators with the finite-band spectrum and the -soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz., Volume 23 (1975), pp. 51-68 (ISSN: 0564-6162) | MR
Integration of non-linear equations by the method of Algebraic Geometry, Funct. Anal. Appl., Volume 11 (1977), pp. 15-31 | MR | Zbl
Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles, Funktsional. Anal. i Prilozhen., Volume 14 (1980), pp. 45-54 (ISSN: 0374-1990) | MR | Zbl
, Topics in topology and mathematical physics (Amer. Math. Soc. Transl. Ser. 2), Volume 170, Amer. Math. Soc., Providence, RI, 1995, pp. 83-119 | MR | Zbl
Irreducibility of the -classes on smooth rational surfaces, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2219-2224 (ISSN: 0002-9939) | MR | Zbl | DOI
Solutions of the KdV equation that are elliptic in , Teoret. Mat. Fiz., Volume 100 (1994), pp. 183-198 (ISSN: 0564-6162) | MR | Zbl | DOI
Matrix elliptic solitons, Duke Math. J., Volume 90 (1997), pp. 523-547 (ISSN: 0012-7094) | MR | Zbl | DOI
Revêtements hyperelliptiques -osculateurs et solitons elliptiques de la hiérarchie KdV, C. R. Math. Acad. Sci. Paris, Volume 345 (2007), pp. 213-218 (ISSN: 1631-073X) | MR | Zbl | DOI
Solitons elliptiques, The Grothendieck Festschrift (Progress in Math.), Volume 88 (1990), pp. 437-479 | MR | Zbl | DOI
Variétés de Kritchever des solitons elliptiques de KP, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi (1993), pp. 187-232 | MR | Zbl
Cité par Sources :






