Hyperelliptic d-osculating covers and rational surfaces
[Projections hyperelliptiques d-osculantes et surfaces rationnelles]
Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 3, pp. 379-409

Let d be a positive integer, 𝕂 an algebraically closed field of characteristic 𝐩2 and X an elliptic curve defined over 𝕂. We consider the hyperelliptic curves equipped with a projection over X, such that the natural image of X in the Jacobian of the curve osculates to order d to the embedding of the curve, at a Weierstrass point. We first study the relations between the degree n, the arithmetic genus g and the osculating degree d of such covers. We prove that they are in a one-to-one correspondence with rational curves of linear systems in a rational surface and deduce (d-1)-dimensional families of hyperelliptic d-osculating covers, of arbitrary big genus g if 𝐩=0 or such that 2g<𝐩(2d+1) if 𝐩>2. It follows at last, (g+d-1)-dimensional families of solutions of the KdV hierarchy, doubly periodic with respect to the d-th variable.

Soit d un entier positif, 𝕂 un corps algébriquement clos de caractéristique 𝐩2 et X une courbe elliptique définie sur 𝕂. On étudie les courbes hyperelliptiques munies d'une projection sur X, telles que l'image naturelle de X dans la jacobienne de la courbe, oscule à l'ordre d au plongement de celle-ci, et ce en un point de Weierstrass. On étudie tout d'abord les relations entre le degré n, le genre arithmétique g et l'ordre d'osculation d des ces projections. On prouve qu'elles sont en correspondance biunivoque avec des courbes rationnelles dans des systèmes linéaires d'une surface rationnelle et on en déduit des familles (d-1)-dimensionnelles de revetements hyperelliptiques d-osculants de genre g, arbitrairement grand si la caractéristique 𝐩=0, ou 2g<𝐩(2d+1) si p𝐩>2. Il en résulte des familles (g+d-1)-dimensionnelles de solutions de la hiérarchie KdV, doublement périodiques par rapport à la d-ième variable.

Publié le :
DOI : 10.24033/bsmf.2669
Classification : 14H40, 14H42, 14H52, 14H81, 14J26
@article{BSMF_2014__142_3_379_0,
     author = {Treibich, Armando},
     title = {Hyperelliptic $d$-osculating covers and rational surfaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {379--409},
     year = {2014},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {142},
     number = {3},
     doi = {10.24033/bsmf.2669},
     mrnumber = {3295718},
     zbl = {1310.14032},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2669/}
}
TY  - JOUR
AU  - Treibich, Armando
TI  - Hyperelliptic $d$-osculating covers and rational surfaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2014
SP  - 379
EP  - 409
VL  - 142
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2669/
DO  - 10.24033/bsmf.2669
LA  - en
ID  - BSMF_2014__142_3_379_0
ER  - 
%0 Journal Article
%A Treibich, Armando
%T Hyperelliptic $d$-osculating covers and rational surfaces
%J Bulletin de la Société Mathématique de France
%D 2014
%P 379-409
%V 142
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2669/
%R 10.24033/bsmf.2669
%G en
%F BSMF_2014__142_3_379_0
Treibich, Armando. Hyperelliptic $d$-osculating covers and rational surfaces. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 3, pp. 379-409. doi: 10.24033/bsmf.2669

Airault, H.; McKean, H. P.; Moser, J. Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 (ISSN: 0010-3640) | MR | Zbl | DOI

Akhmet.shin, A. A.; Volʼvovskiĭ, Yu. S.; Krichever, Igor Moiseevich Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analogue of the elliptic Calogero-Moser system, Funktsional. Anal. i Prilozhen., Volume 36 (2002), pp. 1-17 (ISSN: 0374-1990) | MR | Zbl | DOI

Dubrovin, B. A.; Novikov, S. P. A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry, Dokl. Akad. Nauk SSSR, Volume 219 (1974), pp. 531-534 (ISSN: 0002-3264) | MR

Flédrich, Pierre Paires 3-tangentielles hyperelliptiques et solutions doublement périodiques en t de l'équation de Korteweg-de Vries, Ph. D. Thesis , Université d'Artois (Pôle de Lens) (2003)

Flédrich, Pierre; Treibich, Armando Hyperelliptic osculating covers and KdV solutions periodic in t, Int. Math. Res. Not., Volume 2006 (2006) (ISSN: 1073-7928) | MR | Zbl | DOI

Harbourne, Brian Anticanonical rational surfaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1191-1208 (ISSN: 0002-9947) | MR | Zbl | DOI

Hartshorne, Robin Algebraic geometry, Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl | DOI

Its, A. R.; Matveev, V. B. Schrödinger operators with the finite-band spectrum and the N-soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz., Volume 23 (1975), pp. 51-68 (ISSN: 0564-6162) | MR

Kričever, I. M. Integration of non-linear equations by the method of Algebraic Geometry, Funct. Anal. Appl., Volume 11 (1977), pp. 15-31 | MR | Zbl

Kričever, I. M. Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles, Funktsional. Anal. i Prilozhen., Volume 14 (1980), pp. 45-54 (ISSN: 0374-1990) | MR | Zbl

Krichever, Igor Moiseevich; Babelon, O.; Billey, E.; Talon, M., Topics in topology and mathematical physics (Amer. Math. Soc. Transl. Ser. 2), Volume 170, Amer. Math. Soc., Providence, RI, 1995, pp. 83-119 | MR | Zbl

Lahyane, Mustapha Irreducibility of the (-1)-classes on smooth rational surfaces, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2219-2224 (ISSN: 0002-9939) | MR | Zbl | DOI

Smirnov, A. O. Solutions of the KdV equation that are elliptic in t, Teoret. Mat. Fiz., Volume 100 (1994), pp. 183-198 (ISSN: 0564-6162) | MR | Zbl | DOI

Treibich, Armando Matrix elliptic solitons, Duke Math. J., Volume 90 (1997), pp. 523-547 (ISSN: 0012-7094) | MR | Zbl | DOI

Treibich, Armando Revêtements hyperelliptiques d-osculateurs et solitons elliptiques de la hiérarchie KdV, C. R. Math. Acad. Sci. Paris, Volume 345 (2007), pp. 213-218 (ISSN: 1631-073X) | MR | Zbl | DOI

Treibich, Armando; Verdier, J.-L. Solitons elliptiques, The Grothendieck Festschrift (Progress in Math.), Volume 88 (1990), pp. 437-479 | MR | Zbl | DOI

Treibich, Armando; Verdier, J.-L. Variétés de Kritchever des solitons elliptiques de KP, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi (1993), pp. 187-232 | MR | Zbl

Cité par Sources :