@article{BSMF_1989__117_4_445_0,
author = {Ann\'e, Colette},
title = {Principe de {Dirichlet} pour les formes diff\'erentielles},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {445--450},
year = {1989},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {117},
number = {4},
doi = {10.24033/bsmf.2131},
mrnumber = {91d:58001},
zbl = {0703.53033},
language = {fr},
url = {https://www.numdam.org/articles/10.24033/bsmf.2131/}
}
TY - JOUR AU - Anné, Colette TI - Principe de Dirichlet pour les formes différentielles JO - Bulletin de la Société Mathématique de France PY - 1989 SP - 445 EP - 450 VL - 117 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2131/ DO - 10.24033/bsmf.2131 LA - fr ID - BSMF_1989__117_4_445_0 ER -
%0 Journal Article %A Anné, Colette %T Principe de Dirichlet pour les formes différentielles %J Bulletin de la Société Mathématique de France %D 1989 %P 445-450 %V 117 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2131/ %R 10.24033/bsmf.2131 %G fr %F BSMF_1989__117_4_445_0
Anné, Colette. Principe de Dirichlet pour les formes différentielles. Bulletin de la Société Mathématique de France, Tome 117 (1989) no. 4, pp. 445-450. doi: 10.24033/bsmf.2131
[A] . - A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, Journ. de Math., t. XXXVI, 1957, p. 235-249. | Zbl | MR
[AKS] , and . - A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat., t. Bd 4 nr 34, 1962, p. 417-453. | Zbl | MR
[B] . - Spectral Geometry : Direct and Inverse Problems. - Lecture Notes, 1986. | Zbl
[DF] and . - Nodal sets of eigenfunctions on Riemmannian manifolds, Invent. Math., t. 93 Fasc. 1, 1988, p. 161-183. | Zbl | MR | EuDML
[DS] and . - Harmonic tensors on riemannian manifolds with boundary, Ann. of Math., t. 56 n° 1, 1952, p. 128-156. | Zbl | MR
[H] . - The Analysis of Linear Partial Differential Operators IV. - Springer-Verlag, 1985. | Zbl
Cité par Sources :







