Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations
[Paraproduits espace-temps pour le calcul paracontrôlé, 3d-PAM et équation de Burgers multiplicative]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1399-1456

We sharpen in this work the tools of paracontrolled calculus in order to provide a complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative noise, in a 3-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim in mind, we introduce a pair of intertwined space-time paraproducts on parabolic Hölder spaces, with good continuity, that happens to be pivotal and provides one of the building blocks of higher order paracontrolled calculus.

Nous enrichissons dans ce travail les outils du calcul paracontrôlé afin de fournir une analyse complète de l'équation du modèle parabolique d'Anderson et du système Burgers avec un bruit multiplicatif, dans un cadre riemannien de dimension 3, dans des domaines bornés ou non. Dans ce but, nous introduisons une paire de paraproduits espace-temps agissant sur les espaces de Hölder paraboliques, qui se révèle cruciale et fournit l'un des éléments constitutifs du calcul paracontrôlé d'ordre supérieur.

DOI : 10.24033/asens.2378
Classification : 60H15, 35R60, 35R01.
Keywords: Stochastic singular PDEs, semigroups, paraproducts, paracontrolled calculus, Parabolic Anderson Model equation, multiplicative stochastic Burgers equation
Mots-clés : EDPs singulières stochastiques, semi-groupes, paraproduits, calcul paracontrôlé, modèle parabolique d'Anderson, équation de Burgers avec bruit multiplicatif
@article{ASENS_2018__51_6_1399_0,
     author = {Bailleul, Ismael and Bernicot, Fr\'ed\'eric and Frey, Dorothee},
     title = {Space-time paraproducts  for paracontrolled calculus, {3d-PAM}  and multiplicative {Burgers} equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1399--1456},
     year = {2018},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {6},
     doi = {10.24033/asens.2378},
     mrnumber = {3940901},
     zbl = {1430.60053},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2378/}
}
TY  - JOUR
AU  - Bailleul, Ismael
AU  - Bernicot, Frédéric
AU  - Frey, Dorothee
TI  - Space-time paraproducts  for paracontrolled calculus, 3d-PAM  and multiplicative Burgers equations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 1399
EP  - 1456
VL  - 51
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2378/
DO  - 10.24033/asens.2378
LA  - en
ID  - ASENS_2018__51_6_1399_0
ER  - 
%0 Journal Article
%A Bailleul, Ismael
%A Bernicot, Frédéric
%A Frey, Dorothee
%T Space-time paraproducts  for paracontrolled calculus, 3d-PAM  and multiplicative Burgers equations
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 1399-1456
%V 51
%N 6
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2378/
%R 10.24033/asens.2378
%G en
%F ASENS_2018__51_6_1399_0
Bailleul, Ismael; Bernicot, Frédéric; Frey, Dorothee. Space-time paraproducts  for paracontrolled calculus, 3d-PAM  and multiplicative Burgers equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1399-1456. doi: 10.24033/asens.2378

Bailleul, I.; Bernicot, F. Higher order paracontrolled calculus (preprint arXiv:1609.06966 ) | MR

Bailleul, I.; Bernicot, F. Heat semigroup and singular PDEs, J. Funct. Anal., Volume 270 (2016), pp. 3344-3452 (ISSN: 0022-1236) | MR | Zbl | DOI

Badr, N.; Bernicot, F.; Russ, E. Algebra properties for Sobolev spaces—applications to semilinear PDEs on manifolds, J. Anal. Math., Volume 118 (2012), pp. 509-544 (ISSN: 0021-7670) | MR | Zbl | DOI

Bahouri, H.; Chemin, J.-Y.; Danchin, R., Grundl. math. Wiss., 343, Springer, 2011, 523 pages (ISBN: 978-3-642-16829-1) | MR | Zbl | DOI

Bernicot, F.; Coulhon, T.; Frey, D. Sobolev algebras through heat kernel estimates, J. Éc. polytech. Math., Volume 3 (2016), pp. 99-161 (ISSN: 2429-7100) | MR | Zbl | DOI

Bertini, L.; Cancrini, N.; Jona-Lasinio, G. The stochastic Burgers equation, Comm. Math. Phys., Volume 165 (1994), pp. 211-232 http://projecteuclid.org/euclid.cmp/1104271129 (ISSN: 0010-3616) | MR | Zbl | DOI

Bui, H.-Q.; Duong, X. T.; Yan, L. Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math., Volume 229 (2012), pp. 2449-2502 (ISSN: 0001-8708) | MR | Zbl | DOI

Bernicot, F. A T(1)-theorem in relation to a semigroup of operators and applications to new paraproducts, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 6071-6108 (ISSN: 0002-9947) | MR | Zbl | DOI

Bruned, Y.; Hairer, M.; Zambotti, L. Algebraic renormalisation of regularity structures (preprint arXiv:1610.08468 ) | MR

Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI

Bernicot, F.; Sire, Y. Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 30 (2013), pp. 935-958 (ISSN: 0294-1449) | MR | Zbl | Numdam | DOI

Catellier, R.; Chouk, K. Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab., Volume 46 (2018), pp. 2621-2679 (ISSN: 0091-1798) | MR | Zbl | DOI

Chandra, A.; Hairer, M. An analytic BPHZ theorem for regularity structures (preprint arXiv:1612.08138 ) | MR

Coulhon, T.; Russ, E.; Tardivel-Nachef, V. Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math., Volume 123 (2001), pp. 283-342 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Da Prato, G.; Debussche, A. Strong solutions to the stochastic quantization equations, Ann. Probab., Volume 31 (2003), pp. 1900-1916 (ISSN: 0091-1798) | MR | Zbl | DOI

Friz, P. K.; Hairer, M., Universitext, Springer, 2014, 251 pages (ISBN: 978-3-319-08331-5; 978-3-319-08332-2) | MR | Zbl | DOI

Gubinelli, M.; Imkeller, P.; Perkowski, N. Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015) (ISSN: 2050-5086) | MR | Zbl | DOI

Gubinelli, M.; Perkowski, N. KPZ reloaded, Comm. Math. Phys., Volume 349 (2017), pp. 165-269 (ISSN: 0010-3616) | MR | Zbl | DOI

Hairer, M. A theory of regularity structures, Invent. math., Volume 198 (2014), pp. 269-504 (ISSN: 0020-9910) | MR | Zbl | DOI

Hairer, M.; Labbé, C. A simple construction of the continuum parabolic Anderson model on 𝐑2 , Electron. Commun. Probab., Volume 20 (2015) (ISSN: 1083-589X) | MR | Zbl | DOI

Hairer, M.; Labbé, C. Multiplicative stochastic heat equations on the whole space, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 1005-1054 (ISSN: 1435-9855) | MR | Zbl | DOI

Hairer, M.; Pardoux, É. A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan, Volume 67 (2015), pp. 1551-1604 (ISSN: 0025-5645) | MR | Zbl | DOI

Hairer, M.; Voss, J. Approximations to the stochastic Burgers equation, J. Nonlinear Sci., Volume 21 (2011), pp. 897-920 (ISSN: 0938-8974) | MR | Zbl | DOI

Hairer, M.; Weber, H. Rough Burgers-like equations with multiplicative noise, Probab. Theory Related Fields, Volume 155 (2013), pp. 71-126 (ISSN: 0178-8051) | MR | Zbl | DOI

Triebel, H. Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat., Volume 24 (1986), pp. 299-337 (ISSN: 0004-2080) | MR | Zbl | DOI

Zhu, R.; Zhu, X. Three-dimensional Navier-Stokes equations driven by space-time white noise, J. Differential Equations, Volume 259 (2015), pp. 4443-4508 (ISSN: 0022-0396) | MR | Zbl | DOI

Zhu, R.; Zhu, X. Approximating three-dimensional Navier-Stokes equations driven by space-time white noise, Inf. Dim Anal. Quant. Prob. Rel. Top., Volume 20 (2017) ( doi:10.1142/S0219025717500205 ) | MR | Zbl

Zhu, R.; Zhu, X. Lattice approximation to the dynamical Φ34 model, Ann. Probab., Volume 46 (2018), pp. 397-455 (ISSN: 0091-1798) | MR | Zbl | DOI

Cité par Sources :