Moderate deviations for the range of a transient random walk: path concentration
[Déviations modérées pour le range d'une marche aléatoire transiente: concentration trajectorielle]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 755-786

We study downward deviations of the boundary of the range of a transient walk on the Euclidean lattice. We describe the optimal strategy adopted by the walk in order to shrink the boundary of its range. The technics we develop apply equally well to the range, and provide pathwise statements for the Swiss cheese picture of Bolthausen, van den Berg and den Hollander [7].

Nous étudions les déviations qui réduisent la frontière du support d'une marche transiente sur le réseau euclidien. Nous décrivons en particulier une stratégie optimale pour réduire la frontière du support. Les techniques employées s'appliquent aussi bien au volume du support lui-même, et fournissent des énoncés mathématiques qui illustrent l'image du « fromage suisse » de Bolthausen, van den Berg et den Hollander.

DOI : 10.24033/asens.2331
Classification : 60F10, 60G50.
Keywords: Large deviations, capacity, range of a random walk, boundary of the range.
Mots-clés : Grandes déviations, capacité, range d'une marche aléatoire, frontière du range.
@article{ASENS_2017__50_3_755_0,
     author = {Asselah, Amine and Schapira, Bruno},
     title = {Moderate deviations for the range  of a transient random walk:  path concentration},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {755--786},
     year = {2017},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {3},
     doi = {10.24033/asens.2331},
     mrnumber = {3665554},
     zbl = {1378.60055},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2331/}
}
TY  - JOUR
AU  - Asselah, Amine
AU  - Schapira, Bruno
TI  - Moderate deviations for the range  of a transient random walk:  path concentration
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 755
EP  - 786
VL  - 50
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2331/
DO  - 10.24033/asens.2331
LA  - en
ID  - ASENS_2017__50_3_755_0
ER  - 
%0 Journal Article
%A Asselah, Amine
%A Schapira, Bruno
%T Moderate deviations for the range  of a transient random walk:  path concentration
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 755-786
%V 50
%N 3
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2331/
%R 10.24033/asens.2331
%G en
%F ASENS_2017__50_3_755_0
Asselah, Amine; Schapira, Bruno. Moderate deviations for the range  of a transient random walk:  path concentration. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 755-786. doi: 10.24033/asens.2331

Asselah, A.; Castell, F. A note on random walk in random scenery, Ann. Inst. H. Poincaré Probab. Statist., Volume 43 (2007), pp. 163-173 (ISSN: 0246-0203) | MR | Zbl | Numdam | DOI

Asselah, A.; Schapira, B. Boundary of the range of transient random walk (preprint arXiv:1507.01031, to appear in Probab. Theory Related Fields ) | MR

Asselah, A. On large intersection and self-intersection local times in dimension five or more (preprint arXiv:0801.3918 )

Asselah, A.; Schapira, B.; Sousi, P. Capacity of the range of random walk on  d (in preparation) | MR

Benjamini, I.; Kozma, G.; Yadin, A.; Yehudayoff, A. Entropy of random walk range, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 1080-1092 (ISSN: 0246-0203) | MR | Zbl | Numdam | DOI

Bolthausen, E. On the volume of the Wiener sausage, Ann. Probab., Volume 18 (1990), pp. 1576-1582 (ISSN: 0091-1798) | MR | Zbl | DOI

Bolthausen, E. Localization of a two-dimensional random walk with an attractive path interaction, Ann. Probab., Volume 22 (1994), pp. 875-918 (ISSN: 0091-1798) | MR | Zbl | DOI

Berestycki, N.; Yadin, A. Condensation of random walks and the Wulff crystal (preprint arXiv:1305.0139 )

Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the Wiener sausage, Comm. Pure Appl. Math., Volume 28 (1975), pp. 525-565 (ISSN: 0010-3640) | MR | Zbl | DOI

Donsker, M. D.; Varadhan, S. R. S. On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math., Volume 32 (1979), pp. 721-747 (ISSN: 0010-3640) | MR | Zbl | DOI

Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993), pp. 673-709 (ISSN: 0091-1798) | MR | Zbl | DOI

Jain, N.; Orey, S. On the range of random walk, Israel J. Math., Volume 6 (1968), pp. 373-380 (ISSN: 0021-2172) | MR | Zbl | DOI

Khanin, K. M.; Mazel', A. E.; Shlosman, S. B.; Sinaĭ, Y. G., The Dynkin Festschrift (Progr. Probab.), Volume 34, Birkhäuser, 1994, pp. 167-184 | MR | Zbl | DOI

Lawler, G. F., Modern Birkhäuser Classics, Birkhäuser, 2013, 223 pages (reprint of the 1996 edition) (ISBN: 978-1-4614-5971-2; 978-1-4614-5972-9) | MR | Zbl | DOI

Le Gall, J.-F. Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection, Comm. Math. Phys., Volume 104 (1986), pp. 471-507 http://projecteuclid.org/euclid.cmp/1104115088 (ISSN: 0010-3616) | MR | Zbl | DOI

Lawler, G. F.; Limic, V., Cambridge Studies in Advanced Math., 123, Cambridge Univ. Press, Cambridge, 2010, 364 pages (ISBN: 978-0-521-51918-2) | MR | Zbl | DOI

Okada, I. The inner boundary of random walk range, J. Math. Soc. Japan, Volume 68 (2016), pp. 939-959 (ISSN: 0025-5645) | MR | Zbl | DOI

Phetpradap, P. Intersections of random walks (2012)

Povel, T. Confinement of Brownian motion among Poissonian obstacles in 𝐑d,d3 , Probab. Theory Related Fields, Volume 114 (1999), pp. 177-205 (ISSN: 0178-8051) | MR | Zbl | DOI

Ráth, B.; Sapozhnikov, A. Connectivity properties of random interlacement and intersection of random walks, ALEA Lat. Am. J. Probab. Math. Stat., Volume 9 (2012), pp. 67-83 (ISSN: 1980-0436) | MR | Zbl

Sznitman, A.-S. Long time asymptotics for the shrinking Wiener sausage, Comm. Pure Appl. Math., Volume 43 (1990), pp. 809-820 (ISSN: 0010-3640) | MR | Zbl | DOI

Sznitman, A.-S. On the confinement property of two-dimensional Brownian motion among Poissonian obstacles, Comm. Pure Appl. Math., Volume 44 (1991), pp. 1137-1170 (ISSN: 0010-3640) | MR | Zbl | DOI

van den Berg, M.; Bolthausen, E.; den Hollander, F. Moderate deviations for the volume of the Wiener sausage, Ann. of Math., Volume 153 (2001), pp. 355-406 (ISSN: 0003-486X) | MR | Zbl | DOI

van den Berg, M.; Bolthausen, E.; den Hollander, F. On the volume of the intersection of two Wiener sausages, Ann. of Math., Volume 159 (2004), pp. 741-782 (ISSN: 0003-486X) | MR | Zbl | DOI

Cité par Sources :