We give a complete characterization of connected Lie groups with the Approximation Property for groups (AP). To this end, we introduce a strengthening of property (T), that we call property (T), which is a natural obstruction to the AP. In order to define property (T), we first prove that for every locally compact group , there exists a unique left invariant mean on the space of completely bounded Fourier multipliers of . A locally compact group is said to have property (T) if this mean is a weak continuous functional. After proving that the groups , , and have property (T), we address the question which connected Lie groups have the AP. A technical problem that arises when considering this question from the point of view of the AP is that the semisimple part of the global Levi decomposition of a connected Lie group need not be closed. Because of an important permanence property of property (T), this problem vanishes. It follows that a connected Lie group has the AP if and only if all simple factors in the semisimple part of its Levi decomposition have real rank 0 or 1. Finally, we are able to establish property (T) for all connected simple higher rank Lie groups with finite center.
Nous donnons une caractérisation complète des groupes de Lie connexes ayant la propriété d'approximation (AP) pour des groupes. À cette fin, nous introduisons un renforcement de la propriété (T), que nous appelons propriété (T) et qui est une obstruction naturelle à AP. Dans le but de définir la propriété (T), nous montrons d'abord que pour tout groupe localement compact , l'espace des multiplicateurs complètement bornés de admet une unique moyenne invariante à gauche . Un groupe localement compact a la propriété (T) si est une forme continue pour la topologie -faible. Après avoir démontré que les groupes , et ont la propriété (T), nous étudions la question de savoir lesquels parmi les groupes de Lie connexes ont l'AP. Il se pose alors le problème technique que la partie semi-simple de la décomposition de Levi globale d'un groupe de Lie connexe n'est pas toujours fermée. Grâce à une importante propriété de stabilité de la propriété (T), ce problème disparaît. Il s'en suit qu'un groupe de Lie connexe a l'AP si et seulement si tous les facteurs simples de la partie semi-simple de sa décomposition de Levi ont un rang réel 0 ou 1. Enfin, nous démontrons que tous les groupes de Lie simples connexes de rang et de centre fini ont la propriété (T).
DOI: 10.24033/asens.2299
Keywords: Approximation properties, Lie groups, property (T), invariant means.
Mot clés : Propriétés d'approximation, groupes de Lie, propriété (T), moyennes invariantes.
@article{ASENS_2016__49_4_927_0, author = {Haagerup, Uffe and Knudby, S{\o}ren and de Laat, Tim}, title = {A complete characterization of connected {Lie} groups with the {Approximation} {Property}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {927--946}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {4}, year = {2016}, doi = {10.24033/asens.2299}, mrnumber = {3552017}, zbl = {1368.22003}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2299/} }
TY - JOUR AU - Haagerup, Uffe AU - Knudby, Søren AU - de Laat, Tim TI - A complete characterization of connected Lie groups with the Approximation Property JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 927 EP - 946 VL - 49 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2299/ DO - 10.24033/asens.2299 LA - en ID - ASENS_2016__49_4_927_0 ER -
%0 Journal Article %A Haagerup, Uffe %A Knudby, Søren %A de Laat, Tim %T A complete characterization of connected Lie groups with the Approximation Property %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 927-946 %V 49 %N 4 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2299/ %R 10.24033/asens.2299 %G en %F ASENS_2016__49_4_927_0
Haagerup, Uffe; Knudby, Søren; de Laat, Tim. A complete characterization of connected Lie groups with the Approximation Property. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 49 (2016) no. 4, pp. 927-946. doi : 10.24033/asens.2299. https://www.numdam.org/articles/10.24033/asens.2299/
Unbounded negative definite functions, Canad. J. Math., Volume 33 (1981), pp. 862-871 (ISSN: 0008-414X) | DOI | MR | Zbl
, Cambridge Univ. Press, 2008 |Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A, Volume 3 (1984), pp. 297-302 | MR | Zbl
Positive and negative definite kernels on discrete groups (1987) (preprint lecture notes at Heidelberg University)
Groupes réductifs, Publ. Math. IHÉS, Volume 27 (1965), pp. 55-150 (ISSN: 0073-8301) | DOI | Numdam | MR
, Gordon and Breach Science Publishers, 1970, 118 pages |, Modern Birkhäuser Classics, Birkhäuser, 2001, 126 pages (ISBN: 978-3-0348-0905-4; 978-3-0348-0906-1) | DOI | MR | Zbl
A family of singular oscillatory integral operators and failure of weak amenability, Duke Math. J., Volume 127 (2005), pp. 429-486 (ISSN: 0012-7094) | DOI | MR | Zbl
Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. math., Volume 96 (1989), pp. 507-549 (ISSN: 0020-9910) | DOI | MR | Zbl
Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., Volume 107 (1985), pp. 455-500 (ISSN: 0002-9327) | DOI | MR | Zbl
Almost periodic compactifications, Bull. Amer. Math. Soc., Volume 65 (1959), pp. 134-139 (ISSN: 0002-9904) | DOI | MR | Zbl
Applications of almost periodic compactifications, Acta Math., Volume 105 (1961), pp. 63-97 (ISSN: 0001-5962) | DOI | MR | Zbl
Weak amenability and semidirect products in simple Lie groups, Math. Ann., Volume 306 (1996), pp. 737-742 (ISSN: 0025-5831) | DOI | MR | Zbl
Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc., Volume 67 (1949), pp. 217-240 (ISSN: 0002-9947) | DOI | MR | Zbl
, London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford Univ. Press, 2000, 363 pages (ISBN: 0-19-853482-5) | MR | Zbl
L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, Volume 92 (1964), pp. 181-236 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
, Applications of hypergroups and related measure algebras (Seattle, WA, 1993) (Contemp. Math.), Volume 183, Amer. Math. Soc., Providence, RI, 1995, pp. 111-128 | DOI | MR | Zbl
Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc., Volume 63 (1948), pp. 1-84 (ISSN: 0002-9947) | MR | Zbl
, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969, 113 pages | MR | Zbl
Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., Volume 16 (1955) (ISSN: 0065-9266) | MR | Zbl
Simple Lie groups without the Approximation Property, Duke Math. J., Volume 162 (2013), pp. 925-964 (ISSN: 0012-7094) | DOI | MR | Zbl
Simple Lie groups without the Approximation Property II, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 3777-3809 (ISSN: 0002-9947) | DOI | MR | Zbl
, Pure and Applied Mathematics, 80, Academic Press, Inc., 1978, 628 pages (ISBN: 0-12-338460-5) | MR | Zbl
Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier (Grenoble), Volume 24 (1974), pp. 145-157 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Approximation properties for group -algebras and group von Neumann algebras, Trans. Amer. Math. Soc., Volume 344 (1994), pp. 667-699 (ISSN: 0002-9947) | DOI | MR | Zbl
On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen., Volume 1 (1967), pp. 71-74 (ISSN: 0374-1990) | MR | Zbl
, Progress in Math., 140, Birkhäuser, 2002, 812 pages (ISBN: 0-8176-4259-5) | MR | Zbl
Noncommutative -spaces without the completely bounded approximation property, Duke Math. J., Volume 160 (2011), pp. 71-116 (ISSN: 0012-7094) | DOI | MR | Zbl
The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math., Volume 52 (1950), pp. 606-636 (ISSN: 0003-486X) | DOI | MR | Zbl
, Pure and Applied Mathematics, John Wiley & Sons, Inc., 1984, 418 pages (ISBN: 0-471-89390-0) | MR | Zbl
, London Mathematical Society Lecture Note Series, 294, Cambridge Univ. Press, 2003, 478 pages (ISBN: 0-521-81165-1) | DOI | MR | Zbl
, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., 1991, 424 pages (ISBN: 0-07-054236-8) | MR | Zbl
, Lecture Notes in Math., 1774, Springer, 2002, 296 pages (ISBN: 3-540-42852-6) | DOI | MR | Zbl
Minimal projections, integrable representations and property , Arch. Math. (Basel), Volume 43 (1984), pp. 397-406 (ISSN: 0003-889X) | DOI | MR | Zbl
, Graduate Texts in Math., 102, Springer, 1984, 430 pages (ISBN: 0-387-90969-9) | DOI | MR | Zbl
Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math., Volume 88 (1979), pp. 55-68 (ISSN: 0026-9255) | DOI | MR | Zbl
Herz-Schur multipliers and weakly almost periodic functions on locally compact groups, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 2525-2536 (ISSN: 0002-9947) | DOI | MR | Zbl
Cited by Sources: