[Diagonalisation et rationalisation des séries algébriques de Laurent]
We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime the reduction modulo of the diagonal of a multivariate algebraic power series with integer coefficients is an algebraic power series of degree at most and height at most , where is an effective constant that only depends on the number of variables, the degree of and the height of . This answers a question raised by Deligne [14].
Nous démontrons une version quantitative d’un résultat de Furstenberg [20] et Deligne [14] : la diagonale d’une série formelle algébrique de plusieurs variables à coefficients dans un corps de caractéristique non nulle est une série formelle algébrique d’une variable. Comme conséquence, nous obtenons que, pour tout nombre premier , la réduction modulo de la diagonale d’une série formelle algébrique de plusieurs variables à coefficients entiers est une série formelle algébrique de degré au plus et de hauteur au plus , où est une constante effective ne dépendant que du nombre de variables, du degré de et de la hauteur de . Cela répond à une question soulevée par Deligne [14].
Keywords: diagonals of algebraic functions, formal power series, multivariate Laurent series, G-functions, reduction modulo $p$
Mots-clés : diagonales de fonctions algébriques, séries formelles, séries de Laurent à plusieurs variables, G-fonctions, réduction modulo $p$
@article{ASENS_2013_4_46_6_963_0,
author = {Adamczewski, Boris and Bell, Jason P.},
title = {Diagonalization and rationalization of algebraic {Laurent} series},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {963--1004},
year = {2013},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 46},
number = {6},
doi = {10.24033/asens.2207},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2207/}
}
TY - JOUR AU - Adamczewski, Boris AU - Bell, Jason P. TI - Diagonalization and rationalization of algebraic Laurent series JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 963 EP - 1004 VL - 46 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2207/ DO - 10.24033/asens.2207 LA - en ID - ASENS_2013_4_46_6_963_0 ER -
%0 Journal Article %A Adamczewski, Boris %A Bell, Jason P. %T Diagonalization and rationalization of algebraic Laurent series %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 963-1004 %V 46 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2207/ %R 10.24033/asens.2207 %G en %F ASENS_2013_4_46_6_963_0
Adamczewski, Boris; Bell, Jason P. Diagonalization and rationalization of algebraic Laurent series. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 963-1004. doi: 10.24033/asens.2207
[1] & , On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. Math. 187 (2012), 343-393. | MR
[2] , Transcendence of formal power series with rational coefficients, Theoret. Comput. Sci. 218 (1999), 143-160. | MR
[3] , & , Transcendence of binomial and Lucas' formal power series, J. Algebra 210 (1998), 577-592. | MR
[4] , -functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, 1989. | MR
[5] , Congruence properties of coefficients of solutions of Picard-Fuchs equations, Groupe de travail d'analyse ultramétrique 14 (1986-1987), 1-6.
[6] & , A family of surfaces and , J. reine angew. Math. 351 (1984), 42-54. | MR
[7] & , Analytic continuation of diagonals and Hadamard compositions of multiple power series, Trans. Amer. Math. Soc. 44 (1938), 1-7. | MR
[8] , Diagonales de fractions rationnelles et équations différentielles, Groupe de travail d'analyse ultramétrique 10 (1982-1983), 1-10.
[9] , Diagonales de fractions rationnelles et équations de Picard-Fuchs, Groupe de travail d'analyse ultramétrique 12 (1984-1985), 1-12. | MR | Numdam
[10] , Diagonales de fractions rationnelles, in Séminaire de Théorie des Nombres, Paris 1986-87, Progr. Math. 75, Birkhäuser, 1988, 65-90. | MR
[11] , Globally bounded solutions of differential equations, in Analytic number theory (Tokyo, 1988), Lecture Notes in Math. 1434, Springer, 1990, 45-64. | MR
[12] , , & , Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-419. | MR
[13] , Arithmetic properties of Apéry-like numbers, preprint arXiv:1310.4131.
[14] , Intégration sur un cycle évanescent, Invent. Math. 76 (1984), 129-143.
[15] & , Algebraic power series and diagonals, J. Number Theory 26 (1987), 46-67. | MR
[16] , & , An introduction to -functions, Annals of Math. Studies 133, Princeton Univ. Press, 1994. | MR
[17] , Commutative algebra, Graduate Texts in Math. 150, Springer, 1995. | MR
[18] , Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...), Séminaire Bourbaki, vol. 2002/03, exp. no 910, Astérisque 294 (2004), 27-62. | MR | Numdam
[19] , Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci. 49 (1987), 283-309. | MR
[20] , Algebraic functions over finite fields, J. Algebra 7 (1967), 271-277. | MR
[21] , Algebraic elements in formal power series rings, Israel J. Math. 63 (1988), 281-288. | MR
[22] & , Periods, in Mathematics unlimited-2001 and beyond, Springer, 2001, 771-808. | MR
[23] , The diagonal of a -finite power series is -finite, J. Algebra 113 (1988), 373-378. | MR
[24] & , Rational functions, diagonals, automata and arithmetic, in Number theory (Banff, AB, 1988), de Gruyter, 1990, 339-358. | MR
[25] , Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein 60 (1957), 1-21. | MR
[26] , Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux (1986-1987), exposé 4, 1-27. | MR | Numdam
[27] , Generalized Newton-Puiseux expansion and Abhyankar-Moh semigroup theorem, Invent. Math. 74 (1983), 149-157. | MR
[28] & , Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc. 37 (1988), 395-403. | MR
[29] , Generating functions, in Studies in combinatorics, MAA Stud. Math. 17, Math. Assoc. America, 1978, 100-141. | MR
[30] , Differentiably finite power series, European J. Combin. 1 (1980), 175-188. | MR
[31] , Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math. 62, Cambridge Univ. Press, 1999. | MR
[32] , Transcendence of periods: the state of the art, Pure Appl. Math. Q. 2 (2006), 435-463. | MR
[33] , Elliptic functions and transcendence, in Surveys in number theory, Dev. Math. 17, Springer, 2008, 143-188. | MR
[34] & , On the transcendence of certain series, J. Algebra 121 (1989), 364-369. | MR
Cité par Sources :






