We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur's Inequality for all (connected) split and quasi-split unramified reductive groups. Our results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.
On démontre une conjecture de Kottwitz et Rapoport sur une réciproque à l'inégalité de Mazur pour tout groupe (connexe) réductif, déployé ou quasi-déployé non-ramifié. Nos résultats sont liés à la non-vacuité de certaines variétés de Deligne-Lusztig affines.
Keywords: Newton polygon, isocrystal, affine Deligne-Lusztig variety
Mots-clés : polygone de Newton, isocristal, variétés de Deligne-Lusztig affines
@article{ASENS_2010_4_43_6_1017_0,
author = {Gashi, Q\"endrim R.},
title = {On a conjecture of {Kottwitz} and {Rapoport}},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {1017--1038},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 43},
number = {6},
year = {2010},
doi = {10.24033/asens.2138},
mrnumber = {2778454},
zbl = {1225.14037},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2138/}
}
TY - JOUR AU - Gashi, Qëndrim R. TI - On a conjecture of Kottwitz and Rapoport JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 1017 EP - 1038 VL - 43 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2138/ DO - 10.24033/asens.2138 LA - en ID - ASENS_2010_4_43_6_1017_0 ER -
%0 Journal Article %A Gashi, Qëndrim R. %T On a conjecture of Kottwitz and Rapoport %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 1017-1038 %V 43 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2138/ %R 10.24033/asens.2138 %G en %F ASENS_2010_4_43_6_1017_0
Gashi, Qëndrim R. On a conjecture of Kottwitz and Rapoport. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 43 (2010) no. 6, pp. 1017-1038. doi: 10.24033/asens.2138
[1] , A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5-96. | Zbl | MR | Numdam
[2] , Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics, Springer, 2002. | Zbl | MR
[3] , Lie groups and Lie algebras, Chapters 7-9, Elements of Mathematics, Springer, 2005. | Zbl | MR
[4] , A vanishing result for toric varieties associated with root systems, Albanian J. Math. 1 (2007), 235-244. | Zbl | MR
[5] , Vanishing results for toric varieties associated to and , Transform. Groups 13 (2008), 149-171. | Zbl | MR
[6] & , On dominance and minuscule Weyl group elements, preprint arXiv:0908.1091. | Zbl | MR
[7] , , & , Affine Deligne-Lusztig varieties in affine flag varieties, preprint arXiv:0805.0045. | Zbl
[8] , , & , Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 467-511. | Zbl | MR | Numdam
[9] , Isocrystals with additional structure, Compositio Math. 56 (1985), 201-220. | Zbl | MR | Numdam
[10] , On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not. 2003 (2003), 1433-1447. | Zbl | MR
[11] & , On the existence of -crystals, Comment. Math. Helv. 78 (2003), 153-184. | Zbl | MR
[12] , A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu 3 (2004), 165-183. | Zbl | MR
[13] , A converse to Mazur's inequality for split classical groups, Thèse, University of Chicago, 2004. | Zbl | MR
[14] , Frobenius and the Hodge filtration, Bull. Amer. Math. Soc. 78 (1972), 653-667. | Zbl | MR
[15] , Frobenius and the Hodge filtration (estimates), Ann. of Math. 98 (1973), 58-95. | Zbl | MR
[16] , Reflection processes on graphs and Weyl groups, J. Combin. Theory Ser. A 53 (1990), 128-142. | Zbl | MR
[17] , A positivity property of the Satake isomorphism, Manuscripta Math. 101 (2000), 153-166. | Zbl | MR
[18] , A guide to the reduction modulo of Shimura varieties, Astérisque 298 (2005), 271-318. | Zbl | MR | Numdam
[19] & , On the classification and specialization of -isocrystals with additional structure, Compositio Math. 103 (1996), 153-181. | Zbl | MR | Numdam
[20] , Linear algebraic groups, 2nd éd., Progress in Mathematics, Birkhäuser, 2006. | Zbl | MR
[21] , The partial order of dominant weights, Adv. Math. 136 (1998), 340-364. | Zbl | MR
[22] , Minuscule elements of Weyl groups, J. Algebra 235 (2001), 722-743. | Zbl | MR
[23] , The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 513-526. | Zbl | MR | Numdam
[24] , Existence de -cristaux avec structures supplémentaires, Adv. Math. 190 (2005), 196-224. | Zbl | MR
Cited by Sources:







