[Approximation de Fujita arithmétique]
We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov geometry, conjectured by Moriwaki, by using measures associated to -filtrations.
On démontre un analogue arithmétique du théorème d’approximation de Fujita en géométrie d’Arakelov - conjecturé par Moriwaki - par les mesures associées aux -filtrations.
Keywords: Fujita approximation, Arakelov geometry
Mots-clés : approximation de Fujita, géométrie d'Arakelov
@article{ASENS_2010_4_43_4_555_0,
author = {Chen, Huayi},
title = {Arithmetic {Fujita} approximation},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {555--578},
year = {2010},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 43},
number = {4},
doi = {10.24033/asens.2127},
mrnumber = {2722508},
zbl = {1202.14024},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2127/}
}
TY - JOUR AU - Chen, Huayi TI - Arithmetic Fujita approximation JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 555 EP - 578 VL - 43 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2127/ DO - 10.24033/asens.2127 LA - en ID - ASENS_2010_4_43_4_555_0 ER -
Chen, Huayi. Arithmetic Fujita approximation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 4, pp. 555-578. doi: 10.24033/asens.2127
[1] , & , Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), 279-308. | Zbl | MR
[2] , Éléments de mathématique 1965. | Zbl | MR
[3] , Convergence des polygones de Harder-Narasimhan, to appear in Mémoires de la SMF. | Zbl | MR | Numdam
[4] , & , A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137-156. | Zbl | MR
[5] , , , & , Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1 (2005), 379-403. | Zbl | MR
[6] , , , & , Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607-651. | Zbl | MR
[7] , Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1-3. | Zbl | MR
[8] , Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova 119 (2008), 21-95. | Zbl | MR | Numdam
[9] & , On the number of lattice points in convex symmetric bodies and their duals, Israel J. Math. 74 (1991), 347-357. | Zbl | MR
[10] , Positivity in algebraic geometry. II, Ergebnisse Math. Grenzg. 49, Springer, 2004. | Zbl | MR
[11] & , Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. 42 (2009), 783-835. | Zbl | MR | Numdam
[12] , Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101-142. | Zbl | MR
[13] , Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009), 407-457. | Zbl | MR
[14] , Continuous extension of arithmetic volumes, Int. Math. Res. Not. 2009 (2009), 3598-3638. | Zbl | MR
[15] , Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405-411. | Zbl | MR
[16] , & , Existence of the sectional capacity, Mem. Amer. Math. Soc. 145, 2000. | Zbl | MR
[17] , Fujita's approximation theorem in positive characteristics, J. Math. Kyoto Univ. 47 (2007), 179-202. | Zbl | MR
[18] , Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603-649. | Zbl | MR
[19] , On volumes of arithmetic line bundles, preprint arXiv:0811.0226. | Zbl | MR
[20] , The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. 76 (1962), 560-615. | Zbl | MR
[21] , Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), 187-221. | Zbl | MR
Cité par Sources :






