[Resserrement central non-uniforme et la généricité de l’ergodicité parmi les -symplectomorphismes partiellement hyperboliques]
We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns-Wilkinson and Avila-Santamaria-Viana. Combining this new technique with other constructions we prove that -generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.
Nous introduisons une notion non-uniforme de resserrement central pour les difféomorphismes partiellement hyperboliques qui nous permet de généraliser quelques résultats de Burns-Wilkinson et Avila-Santamaria-Viana. Cette nouvelle technique est utilisée, en combinaison avec d’autres constructions, pour démontrer la généricité de l’ergodicité parmi les difféomorphismes symplectiques partiellement hyperboliques de classe . De plus, nous obtenons de nouveaux exemples de dynamiques stablement ergodiques.
Keywords: partial hyperbolicity, center bunching, ergodicity, symplectic diffeomorphisms
Mots-clés : hyperbolicité partielle, resserrement central, ergodicité, difféomorphismes symplectiques
@article{ASENS_2009_4_42_6_931_0,
author = {Avila, Artur and Bochi, Jairo and Wilkinson, Amie},
title = {Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {931--979},
year = {2009},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 42},
number = {6},
doi = {10.24033/asens.2113},
mrnumber = {2567746},
zbl = {1191.37017},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2113/}
}
TY - JOUR AU - Avila, Artur AU - Bochi, Jairo AU - Wilkinson, Amie TI - Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 931 EP - 979 VL - 42 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2113/ DO - 10.24033/asens.2113 LA - en ID - ASENS_2009_4_42_6_931_0 ER -
%0 Journal Article %A Avila, Artur %A Bochi, Jairo %A Wilkinson, Amie %T Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 931-979 %V 42 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2113/ %R 10.24033/asens.2113 %G en %F ASENS_2009_4_42_6_931_0
Avila, Artur; Bochi, Jairo; Wilkinson, Amie. Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 6, pp. 931-979. doi: 10.24033/asens.2113
[1] & , Flavors of partial hyperbolicity, in preparation.
[2] & , New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970), 1-35. | Zbl | MR
[3] & , A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems 27 (2007), 1399-1417. | Zbl | MR
[4] , Le “closing lemma” en topologie , Mém. Soc. Math. Fr. (N.S.) 74 (1998). | Zbl | MR | Numdam
[5] , & , Dynamiques symplectiques génériques, Ergodic Theory Dynam. Systems 25 (2005), 1401-1436. | Zbl | MR
[6] , Random dynamical systems, 2nd éd., Springer Mono. Math., Springer, 2002. | MR
[7] , On the regularization of conservative maps, to appear in Acta Math. | Zbl | MR
[8] , & , Cocycles over partially hyperbolic maps, preprint.
[9] , -generic symplectic diffeomorphisms: partial hyperbolicity and zero center Lyapunov exponents, to appear in J. Inst. Math. Jussieu. | Zbl | MR
[10] & , The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math. 161 (2005), 1423-1485. | Zbl | MR
[11] & , Récurrence et généricité, Invent. Math. 158 (2004), 33-104. | Zbl | MR
[12] , & , A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 355-418. | Zbl | MR
[13] , & , Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sciences 102, Springer, 2005. | Zbl | MR
[14] , , & , Abundance of stable ergodicity, Comment. Math. Helv. 79 (2004), 753-757. | Zbl | MR
[15] , Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl. 9 (1975), 8-16. | Zbl | MR
[16] , & , Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), 927-942. | Zbl | MR
[17] , , & , Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn. 2 (2008), 63-81. | Zbl | MR
[18] & , On the ergodicity of partially hyperbolic systems, Annals of Math. 171 (2010), 429-467. | Zbl | MR
[19] & , Stable accessibility is dense, Astérisque 287 (2003), 33-60. | Zbl | MR | Numdam
[20] , Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems 27 (2007), 1839-1849. | Zbl | MR
[21] , & , Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. | Zbl | MR
[22] & , Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 641-661. | Zbl | MR | Numdam
[23] , An ergodic closing lemma, Ann. of Math. 116 (1982), 503-540. | Zbl | MR
[24] & , Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920. | Zbl | MR
[25] , Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1989. | Zbl | MR
[26] & , Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), 1-52. | Zbl | MR
[27] , & , Hölder foliations, Duke Math. J. 86 (1997), 517-546. | Zbl | MR
[28] , , & , A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms, Electron. Res. Announc. Math. Sci. 14 (2007), 74-81 (electronic). | Zbl | MR
[29] , & , Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353-381. | Zbl | MR
[30] & , Partial hyperbolicity or dense elliptic periodic points for -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), 5119-5138 (electronic). | Zbl | MR
[31] & , Stably ergodic approximation: two examples, Ergodic Theory Dynam. Systems 20 (2000), 875-893. | Zbl | MR
[32] , Robust transitivity and almost robust ergodicity, Ergodic Theory Dynam. Systems 24 (2004), 1261-1269. | Zbl | MR
[33] , The cohomological equation for partially hyperbolic diffeomorphisms, preprint.
[34] , Note on smoothing symplectic and volume-preserving diffeomorphisms, in Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, 1977, 828-854. | Zbl | MR
Cité par Sources :







