In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.
Dans cet article nous prouvons un principe de grandes déviations de niveau trois pour une classe très générale de processus ponctuels, c'est à dire les processus de Hawkes non-linéaires ; nous obtenons une formule explicite pour la fonctionnelle de taux, donnée par l'entropie au niveau du processus.
Keywords: large deviations, rare events, point processes, Hawkes processes, self-exciting processes
@article{AIHPB_2014__50_3_845_0,
author = {Zhu, Lingjiong},
title = {Process-level large deviations for nonlinear {Hawkes} point processes},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {845--871},
year = {2014},
publisher = {Gauthier-Villars},
volume = {50},
number = {3},
doi = {10.1214/12-AIHP532},
mrnumber = {3224291},
zbl = {1296.60129},
language = {en},
url = {https://www.numdam.org/articles/10.1214/12-AIHP532/}
}
TY - JOUR AU - Zhu, Lingjiong TI - Process-level large deviations for nonlinear Hawkes point processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 845 EP - 871 VL - 50 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP532/ DO - 10.1214/12-AIHP532 LA - en ID - AIHPB_2014__50_3_845_0 ER -
%0 Journal Article %A Zhu, Lingjiong %T Process-level large deviations for nonlinear Hawkes point processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 845-871 %V 50 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP532/ %R 10.1214/12-AIHP532 %G en %F AIHPB_2014__50_3_845_0
Zhu, Lingjiong. Process-level large deviations for nonlinear Hawkes point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 845-871. doi: 10.1214/12-AIHP532
[1] , , and . Scaling limits for Hawkes processes and application to financial statistics. Preprint, 2012. Available at arXiv:1202.0842. | Zbl
[2] and . Large deviations of Poisson cluster processes. Stoch. Models 23 (2007) 593-625. | Zbl | MR
[3] and . Stability of nonlinear Hawkes processes. Ann. Probab. 24 (1996) 1563-1588. | Zbl | MR
[4] and . An Introduction to the Theory of Point Processes, 1st edition. Springer, New York, 1988. | Zbl | MR
[5] and . Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | Zbl | MR
[6] and . Asymptotic evaluation of certain Markov process expectations for large time. IV. Comm. Pure Appl. Math. 36 (1983) 183-212. | Zbl | MR
[7] . Point processes and random measures. Adv. in Appl. Probab. 9 (1977) 502-526. | Zbl | MR
[8] . Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1971) 83-90. | Zbl | MR
[9] . Multivariate Hawkes processes. Ph.D. thesis, ETH, 2009. | Zbl
[10] and . Statistics of Random Processes II: Applications, 2nd edition. Springer, Berlin, 2001. | Zbl | MR
[11] and . Risk processes with non-stationary Hawkes arrivals. Methodol. Comput. Appl. Probab. 12 (2010) 415-429. | Zbl | MR
[12] . Special invited paper: Large deviations. Ann. Probab. 36 (2008) 397-419. | Zbl
[13] . Large Deviations and Applications. SIAM, Philadelphia, 1984. | Zbl | MR
[14] . Large deviations for Markovian nonlinear Hawkes processes. Preprint, 2011. Available at arXiv:1108.2432. | MR
[15] . Central limit theorem for nonlinear Hawkes processes. J. Appl. Probab. 50 (2013) 760-771. | MR
Cité par Sources :





