We study a continuous time random walk in an environment of dynamic random conductances in . We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for , and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
Nous étudions une chaîne de Markov en temps continu dans un environnement dynamique de conductances aléatoires dans . Nous supposons que les conductances sont stationnaires ergodiques, uniformément positives et polynomialement mélangeantes en espace et en temps. Nous montrons un principe d’invariance << quenched >> pour , et nous obtenons des bornes sur les fonctions de Green et un théorème limite local. Nous discutons aussi les liens avec les modèles d’interfaces aléatoires.
Keywords: random conductance model, dynamic environment, invariance principle, ergodic, corrector, point of view of the particle, stochastic interface model
@article{AIHPB_2014__50_2_352_0,
author = {Andres, Sebastian},
title = {Invariance principle for the random conductance model with dynamic bounded conductances},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {352--374},
year = {2014},
publisher = {Gauthier-Villars},
volume = {50},
number = {2},
doi = {10.1214/12-AIHP527},
mrnumber = {3189075},
zbl = {1290.60109},
language = {en},
url = {https://www.numdam.org/articles/10.1214/12-AIHP527/}
}
TY - JOUR AU - Andres, Sebastian TI - Invariance principle for the random conductance model with dynamic bounded conductances JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 352 EP - 374 VL - 50 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP527/ DO - 10.1214/12-AIHP527 LA - en ID - AIHPB_2014__50_2_352_0 ER -
%0 Journal Article %A Andres, Sebastian %T Invariance principle for the random conductance model with dynamic bounded conductances %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 352-374 %V 50 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP527/ %R 10.1214/12-AIHP527 %G en %F AIHPB_2014__50_2_352_0
Andres, Sebastian. Invariance principle for the random conductance model with dynamic bounded conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 352-374. doi: 10.1214/12-AIHP527
[1] , , and . Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. | MR
[2] and . Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 205-224. | Zbl | MR
[3] and . Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | Zbl | MR
[4] and . Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 (2009) 1-16. | Zbl | MR
[5] and . Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | Zbl | MR
[6] . Recent progress on the random concuctance model. Probab. Surv. 8 (2011) 294-373. | Zbl | MR
[7] and . Functional CLT for random walk among bounded random conductances. Electron J. Probab. 12 (2007) 1323-1348. | Zbl | MR
[8] and . Helffer-Sjöstrand representation for conservative dynamics. Markov Process. Related Fields 18 (2012) 71-88. | Zbl | MR
[9] , and . Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133-156. | Zbl | MR
[10] , and . Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009) 3285-3299. | Zbl | MR
[11] and . On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields 133 (2005) 358-390. | Zbl | MR
[12] and . Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | Zbl | MR
[13] and . Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 (2009) 245-251. | Zbl | MR
[14] . Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. | Zbl | MR
[15] and . Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. | Zbl | MR
[16] . Stochastic Interface Models. In Ecole d'été de probabilités de Saint Flour 2003 103-274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. | Zbl | MR
[17] and . Motion by mean curvature from the Ginzburg-Landau interface models. Commun. Math. Phys. 185 (1997) 1-36. | Zbl | MR
[18] , and . Equilibrium fluctuations for interface model. Ann. Probab. 29 (2001) 1138-1172. | Zbl | MR
[19] and . On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | Zbl | MR
[20] and . Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 43-57. | Zbl | MR
[21] , and . Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. | MR
[22] . Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | Zbl | MR
[23] and . Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | Zbl | MR
[24] . Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 294-327. | Zbl | MR | Numdam
[25] and . An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299-314. | Zbl | MR
[26] and . Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 373-420. | Zbl | MR | Numdam
[27] and , Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. | Zbl
[28] . Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. | Zbl | MR
[29] and . Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | Zbl | MR
Cité par Sources :





