We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell's formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.
On démontre une formule stochastique pour l'entropie relative par rapport à la Gaussienne, dans le genre de la formule de Borell pour la transformée de Laplace. Cette formule donne des preuves simples d'un certain nombre d'inégalités fonctionnelles.
Keywords: gaussian measure, entropy, functional inequalities, Girsanov's formula
@article{AIHPB_2013__49_3_885_0,
author = {Lehec, Joseph},
title = {Representation formula for the entropy and functional inequalities},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {885--899},
year = {2013},
publisher = {Gauthier-Villars},
volume = {49},
number = {3},
doi = {10.1214/11-AIHP464},
mrnumber = {3112438},
zbl = {1279.39011},
language = {en},
url = {https://www.numdam.org/articles/10.1214/11-AIHP464/}
}
TY - JOUR AU - Lehec, Joseph TI - Representation formula for the entropy and functional inequalities JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 885 EP - 899 VL - 49 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP464/ DO - 10.1214/11-AIHP464 LA - en ID - AIHPB_2013__49_3_885_0 ER -
%0 Journal Article %A Lehec, Joseph %T Representation formula for the entropy and functional inequalities %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 885-899 %V 49 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP464/ %R 10.1214/11-AIHP464 %G en %F AIHPB_2013__49_3_885_0
Lehec, Joseph. Representation formula for the entropy and functional inequalities. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 3, pp. 885-899. doi: 10.1214/11-AIHP464
[1] . Convex geometry and functional analysis. In Handbook of the Geometry of Banach Spaces, Vol. 1 161-194. W. B. Johnson and J. Lindenstrauss (Eds). North-Holland, Amsterdam, 2001. | Zbl | MR
[2] . On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-361. | Zbl | MR
[3] and . On Gaussian Brunn-Minkowski inequalities. Studia Math. 191 (2009) 283-304. | Zbl | MR
[4] . Conditioned stochastic differential equations: Theory, examples and application to finance. Stochastic Process. Appl. 100 (2002) 109-145. | Zbl | MR
[5] . Diffusion equations and geometric inequalities. Potential Anal. 12 (2000) 49-71. | Zbl | MR
[6] and . A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998) 1641-1659. | Zbl | MR
[7] and . Best constants in Young's inequality, its converse and its generalization to more than three functions. Adv. Math. 20 (1976) 151-173. | Zbl | MR
[8] , and . Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab. 2 (1997) 71-81. | Zbl | MR
[9] and . Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities. Geom. Funct. Anal. 19 (2009) 373-405. | Zbl | MR
[10] and . The geometry of Euclidean convolution inequalities and entropy. Proc. Amer. Math. Soc. 138 (2010) 2755-2769. | Zbl | MR
[11] , and . Information theoretic inequalities. IEEE Trans. Inform. Theory 37 (1991) 1501-1518. | Zbl | MR
[12] and . Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334 (2002) 1025-1028. | Zbl | MR
[13] and . Controlled Markov Processes and Viscosity Solutions, 2nd edition. Stochastic Modelling and Applied Probability 25. Springer, New York, 2006. | Zbl | MR
[14] . An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems (Marseille-Luminy, 1984) 156-163. Lecture Notes in Control and Inform. Sci. 69. Springer, Berlin, 1985. | Zbl | MR
[15] . Time reversal on Wiener space. In Stochastic Processes - Mathematics and Physics (Bielefeld, 1984) 119-129. Lecture Notes in Math. 1158. Springer, Berlin, 1986. | Zbl | MR
[16] . Random fields and diffusion processes. In École d'Été de Probabilités de Saint-Flour XV-XVII, 1985-87 101-203. Lecture Notes in Math. 1362. Springer, Berlin, 1988. | Zbl | MR
[17] . Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061-1083. | Zbl | MR
[18] and . Statistics of Random Processes, Vol. 1: General Theory. Applications of Mathematics 5. Springer, New York, 1977. | Zbl | MR
[19] . The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer, Berlin, 2006. | Zbl | MR
[20] and . Diffusions, Markov Processes, and Martingales, Vol. 2: Itô Calculus. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge, 2000. | Zbl | MR
[21] . On the geometry of metric measure spaces. I. Acta Math. 196 (2006) 65-131. | Zbl | MR
[22] . Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587-600. | Zbl | MR | EuDML
[23] . Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, 1984. | Zbl | MR
[24] . Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. | Zbl | MR
Cité par Sources :






