Consider a non-centered matrix with a separable variance profile:
Considérons une matrice , non centrée, de taille , avec un profil de variance séparable :
Keywords: random matrix, empirical distribution of the eigenvalues, Stieltjes transform
@article{AIHPB_2013__49_1_36_0,
author = {Hachem, Walid and Loubaton, Philippe and Najim, Jamal and Vallet, Pascal},
title = {On bilinear forms based on the resolvent of large random matrices},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {36--63},
year = {2013},
publisher = {Gauthier-Villars},
volume = {49},
number = {1},
doi = {10.1214/11-AIHP450},
mrnumber = {3060147},
zbl = {1272.15020},
language = {en},
url = {https://www.numdam.org/articles/10.1214/11-AIHP450/}
}
TY - JOUR AU - Hachem, Walid AU - Loubaton, Philippe AU - Najim, Jamal AU - Vallet, Pascal TI - On bilinear forms based on the resolvent of large random matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 36 EP - 63 VL - 49 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP450/ DO - 10.1214/11-AIHP450 LA - en ID - AIHPB_2013__49_1_36_0 ER -
%0 Journal Article %A Hachem, Walid %A Loubaton, Philippe %A Najim, Jamal %A Vallet, Pascal %T On bilinear forms based on the resolvent of large random matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 36-63 %V 49 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP450/ %R 10.1214/11-AIHP450 %G en %F AIHPB_2013__49_1_36_0
Hachem, Walid; Loubaton, Philippe; Najim, Jamal; Vallet, Pascal. On bilinear forms based on the resolvent of large random matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 36-63. doi: 10.1214/11-AIHP450
[1] and . On the precoder design of flat fading MIMO systems equipped with MMSE receivers: A large-system approach. IEEE Trans. Inform. Theory 57 (2011) 4138-4155. | MR
[2] , and . On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 (2007) 1532-1572. | Zbl | MR
[3] and . No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 (1998) 316-345. | Zbl | MR
[4] and . Exact separation of eigenvalues of large-dimensional sample covariance matrices. Ann. Probab. 27 (1999) 1536-1555. | Zbl | MR
[5] and . No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices. Random Matrices Theory Appl. 1 (2012) 1150004. | Zbl | MR
[6] and . The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Preprint, 2009. Available at arXiv:0910.2120. | Zbl
[7] and . On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98 (2007) 678-694. | Zbl | MR
[8] , and . The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab. 37 (2009) 1-47. | Zbl | MR
[9] , , , and . On the capacity achieving covariance matrix for Rician MIMO channels: An asymptotic approach. IEEE Trans. Inform. Theory 56 (2010) 1048-1069. | MR
[10] , and . Rigidity of eigenvalues of generalized Wigner matrices. Unpublished manuscript, 2010. Available at[4] http://arxiv.org/pdf/1007.4652. | Zbl | MR
[11] . An Introduction to Statistical Analysis of Random Arrays. VSP, Utrecht, 1998. | Zbl | MR
[12] and . A new application of random matrices: is not a group. Ann. of Math. (2) 162 (2005) 711-775. | Zbl | MR
[13] , , and . A CLT for information-theoretic statistics of non-centered Gram random matrices. Random Matrices Theory Appl. 1 (2012) 1150010. | Zbl | MR
[14] , and . The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 649-670. | Zbl | MR | Numdam | EuDML
[15] , and . Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab. 17 (2007) 875-930. | Zbl | MR
[16] and . Topics in Matrix Analysis. Cambridge Univ. Press, Cambridge, 1994. | Zbl | MR
[17] , , , and . On the fluctuations of the mutual information for non centered MIMO channels: The non Gaussian case. In Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2010.
[18] and . Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72 (1967) 507-536. | Zbl | MR
[19] . Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory 54 (2008) 5113-5129. | MR | Zbl
[20] . On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices. IEEE Trans. Signal Process. 56 (2008) 5353-5368. | MR
[21] and . Modified subspace algorithms for DOA estimation with large arrays. IEEE Trans. Signal Process. 56 (2008) 598-614. | MR
[22] . Real and Complex Analysis, 3rd edition. McGraw-Hill, New York, 1986. | Zbl
[23] . Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 (1995) 331-339. | Zbl | MR
[24] and . On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal. 54 (1995) 175-192. | Zbl | MR
[25] , and . Improved subspace estimation for multivariate observations of high dimension: The deterministic signals case. IEEE Trans. Inform. Theory 58 (2012) 1043-1068. | MR
Cité par Sources :






